Steven Busan

Learn More
Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA(More)
BACKGROUND The kappa opioid receptor (KOR) and its endogenous agonist, the neuropeptide dynorphin, are a critical component of the central stress system. Both dynorphin and KOR are expressed in the bed nucleus of the stria terminalis (BNST), a brain region associated with anxiety and stress. This suggests that KOR activation in this region may play a role(More)
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemistries exploit small electrophilic reagents that react with 2′-hydroxyl groups to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues by using reverse transcriptase to misread a SHAPE-modified nucleotide and then counting(More)
The length of the CAG-repeat region in the huntingtin mRNA is predictive of Huntington's disease. Structural studies of CAG-repeat-containing RNAs suggest that these sequences form simple hairpin structures; however, in the context of the full-length huntingtin mRNA, CAG repeats may form complex structures that could be targeted for therapeutic(More)
Complex higher-order RNA structures play critical roles in all facets of gene expression; however, the through-space interaction networks that define tertiary structures and govern sampling of multiple conformations are poorly understood. Here we describe single-molecule RNA structure analysis in which multiple sites of chemical modification are identified(More)
  • Yang Liu, Jianbo Chen, +5 authors Wei-Shau Hu
  • Virology
  • 2017
The HIV-1 RNA genome contains complex structures with many structural elements playing regulatory roles during viral replication. A recent study has identified multiple RNA structures with unknown functions that are conserved among HIV-1 and two simian immunodeficiency viruses. To explore the roles of these conserved RNA structures, we introduced synonymous(More)
Mutational profiling (MaP) enables detection of sites of chemical modification in RNA as sequence changes during reverse transcription (RT), subsequently read out by massively parallel sequencing. We introduce ShapeMapper 2, which integrates careful handling of all classes of adduct-induced sequence changes, sequence variant correction, basecall quality(More)
We describe structural analysis of small RNAs by SHAPE chemical probing. RNAs are treated with 1-methyl-7-nitroisatoic anhydride, a reagent that detects local nucleotide flexibility; and N-methylisatoic anhydride and 1-methyl-6-nitroisatoic anhydride, reagents which together detect higher-order and noncanonical interactions. Chemical adducts are quantified(More)
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis(More)
  • 1