Learn More
A significant fraction of the Saccharomyces cerevisiae genome is transcribed periodically during the cell division cycle, indicating that properly timed gene expression is important for regulating cell-cycle events. Genomic analyses of the localization and expression dynamics of transcription factors suggest that a network of sequentially expressed(More)
We have isolated a heterogeneous collection of human genomic sequences which replicate autonomously when introduced into human cells. The novel strategy for the isolation of these sequences involved cloning random human DNA fragments into a defective Epstein-Barr virus vector. This vector alone was unable to replicate in human cells, but appeared to provide(More)
The yeast S-phase cyclins Clb5 and Clb6 are closely related proteins that are synthesized late in G1. Although often grouped together with respect to function, Clb5 and Clb6 exhibit differences in their ability to promote S-phase progression. DNA replication is significantly slowed in clb5Delta mutants but not in clb6Delta mutants. We have examined the(More)
During embryonic cell cycles, B-cyclin-CDKs function as the core component of an autonomous oscillator. Current models for the cell-cycle oscillator in nonembryonic cells are slightly more complex, incorporating multiple G1, S phase, and mitotic cyclin-CDK complexes. However, periodic events persist in yeast cells lacking all S phase and mitotic B-cyclin(More)
We present a flexible branching process model for cell population dynamics in synchrony/time-series experiments used to study important cellular processes. Its formulation is constructive, based on an accounting of the unique cohorts in the population as they arise and evolve over time, allowing it to be written in closed form. The model can attribute(More)
The budding yeast, Saccharomyces cerevisiae has been a remarkably useful model system for the study of eukaryotic cell cycle regulation. Flow cytometric analysis of DNA content in budding yeast has become a standard tool for the analysis of cell cycle progression. However, popular protocols utilizing the DNA binding dye, propidium iodide, suffer from a(More)
In yeast and somatic cells, mechanisms ensure cell-cycle events are initiated only when preceding events have been completed. In contrast, interruption of specific cell-cycle processes in early embryonic cells of many organisms does not affect the timing of subsequent events, indicating that cell-cycle events are triggered by a free-running cell-cycle(More)
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene(More)
Organelles called centrosomes in metazoans or spindle pole bodies (SPBs) in yeast direct the assembly of a bipolar spindle that is essential for faithful segregation of chromosomes during mitosis. Abnormal accumulation of multiple centrosomes leads to genome instability, and has been observed in both tumour cells and cells with targeted mutations in(More)
The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part,(More)