Steven Andrew Culpepper

Learn More
Statistical prediction remains an important tool for decisions in a variety of disciplines. An equally important issue is identifying factors that contribute to more or less accurate predictions. The time series literature includes well developed methods for studying predictability and volatility over time. This article develops distribution-appropriate(More)
Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but use ANCOVA(More)
Dynamic theories of family size preferences posit that they are not a fixed and stable goal but rather are akin to a moving target that changes within individuals over time. Nonetheless, in high-fertility contexts, changes in family size preferences tend to be attributed to low construct validity and measurement error instead of genuine revisions in(More)
Standardized tests are frequently used for selection decisions, and the validation of test scores remains an important area of research. This paper builds upon prior literature about the effect of nonlinearity and heteroscedasticity on the accuracy of standard formulas for correcting correlations in restricted samples. Existing formulas for direct range(More)
In order to look more closely at the many particular skills examinees utilize to answer items, cognitive diagnosis models have received much attention, and perhaps are preferable to item response models that ordinarily involve just one or a few broadly defined skills, when the objective is to hasten learning. If these fine-grained skills can be identified,(More)
The study of prediction bias is important and the last five decades include research studies that examined whether test scores differentially predict academic or employment performance. Previous studies used ordinary least squares (OLS) to assess whether groups differ in intercepts and slopes. This study shows that OLS yields inaccurate inferences for(More)
  • 1