Learn More
We have studied the characteristics of bone ingrowth of a new porous tantalum biomaterial in a simple transcortical canine model using cylindrical implants 5 x 10 mm in size. The material was 75% to 80% porous by volume and had a repeating arrangement of slender interconnecting struts which formed a regular array of dodecahedron-shaped pores. We performed(More)
This study evaluated the osseous tissue response to a noncemented metal-backed acetabular component made of a new porous tantalum biomaterial. Eleven dogs with bilateral total hip arthroplasties (22 acetabular implants) were studied for a period of 6 months. Thin section histology, high-resolution radiography, and backscattered scanning electron microscopy(More)
Mutations in the 25-hydroxyvitamin D-1alpha-hydroxylase gene (CYP27B1; 1alpha-OHase) cause pseudo vitamin D deficiency rickets (PDDR), while mutations in the vitamin D receptor (VDR) cause hereditary vitamin D resistance rickets. Animal models of both diseases have been engineered. The bone phenotype of VDR-ablated mice can be completely rescued by feeding(More)
The purpose of this study was to examine the radiographic and histologic response to corundum blasted implant surfaces of varying roughness in a canine total hip arthroplasty model. Three types of tapered femoral implants were made from titanium alloy and were identical in every respect except surface finish. The entire surface of the femoral implant had a(More)
Tissue engineering based on building blocks is an emerging method to fabricate 3D tissue constructs. This method requires depositing and assembling building blocks (cell-laden microgels) at high throughput. The current technologies (e.g., molding and photolithography) to fabricate microgels have throughput challenges and provide limited control over(More)
The purpose of the current study was to ascertain the relative contributions of surface chemistry and topography to the osseointegration of hydroxyapatite-coated implants. A canine femoral intramedullary implant model was used to compare the osseous response to commercially pure titanium implants that were either polished, grit-blasted, plasma-sprayed with(More)
The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified(More)
The treatment of choice for pseudo-vitamin D deficiency rickets (PDDR), caused by mutations in the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1; 1alpha-OHase) gene, is replacement therapy with 1,25(OH)2D3. We have previously engineered an animal model of PDDR by targeted inactivation of the 1alpha-OHase gene in mice. Replacement therapy was performed in(More)
This study determined the soft tissue attachment strength and extent of ingrowth to a porous tantalum biomaterial. Eight dorsal subcutaneous implants (in two dogs) were evaluated at 4, 8, and 16 weeks. Upon retrieval, all implants were surrounded completely by adherent soft tissue. Implants were harvested with a tissue flap on the cutaneous aspect and peel(More)
The purpose of this study was to compare, with regard to fixation of the implant and femoral bone resorption, two fully porous-coated stems of different stiffnesses in a canine total hip arthroplasty model. A bilateral arthroplasty was carried out with insertion of a titanium-alloy stem (which had stiffness properties comparable with those of the canine(More)