Learn More
The eag family of K+ channels contains three known subtypes: eag, elk, and erg. Genes representing the first two subtypes have been identified in flies and mammals, whereas the third subtype has been defined only by the human HERG gene, which encodes an inwardly rectifying channel that is mutated in some cardiac arrhythmias. To establish the predicted(More)
Mutations of eag, first identified in Drosophila on the basis of their leg-shaking phenotype, cause repetitive firing and enhanced transmitter release in motor neurons. The encoded EAG polypeptide is related both to voltage-gated K+ channels and to cyclic nucleotide-gated cation channels. Homology screens identified a family of eag-related channel(More)
Soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE)-mediated fusion of synaptic vesicles with the presynaptic-plasma membrane is essential for communication between neurons. Disassembly of the SNARE complex requires the ATPase N-ethylmaleimide-sensitive fusion protein (NSF). To determine where in the synaptic-vesicle cycle NSF(More)
Members of the Ether à go-go (Eag) K+ channel subfamilies Eag, Erg, and Elk are widely expressed in the nervous system, but their neural functions in vivo remain largely unknown. The biophysical properties of channels from the Eag and Erg subfamilies have been described, and based on their characteristic features and expression patterns, Erg channels have(More)
The ability to clone and manipulate DNA segments is central to molecular methods that enable expression, screening, and functional characterization of genes, proteins, and regulatory elements. We previously described the development of a novel technology that utilizes in vitro site-specific recombination to provide a robust and flexible platform for(More)
The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K(+)) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired(More)
Long QT syndrome, either inherited or acquired from drug treatments, can result in ventricular arrhythmia (torsade de pointes) and sudden death. Human ether-a-go-go-related gene (hERG) channel inhibition by drugs is now recognized as a common reason for the acquired form of long QT syndrome. It has been reported that more than 100 known drugs inhibit the(More)
The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and(More)
A hallmark of Huntington's disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson's,(More)
All solid malignancies share characteristic traits, including unlimited cellular proliferation, evasion of immune regulation, and the propensity to metastasize. The authors have previously described that a subnuclear structure, the perinucleolar compartment (PNC), is associated with the metastatic phenotype in solid tumor cancer cells. The percentage of(More)