Learn More
A normative framework for modeling causal and counterfactual reasoning has been proposed by Spirtes, Glymour, and Scheines (1993; cf. Pearl, 2000). The framework takes as fundamental that reasoning from observation and intervention differ. Intervention includes actual manipulation as well as counterfactual manipulation of a model via thought. To represent(More)
The verbs cause, enable, and prevent express beliefs about the way the world works. We offer a theory of their meaning in terms of the structure of those beliefs expressed using qualitative properties of causal models, a graphical framework for representing causal structure. We propose that these verbs refer to a causal model relevant to a discourse and(More)
A feature is central to a concept to the extent that other features depend on it. Four studies tested the hypothesis that people will project a feature from a base concept to a target concept to the extent that they believe the feature is central to the two concepts. This centrality hypothesis implies that feature projection is guided by a principle that(More)
This study investigated whether different lexicalization patterns of motion events in English and Spanish predict how speakers of these languages perform in non-linguistic tasks. Using 36 motion events, we compared English and Spanish speakers' linguistic descriptions to their performance on two non-linguistic tasks: recognition memory and similarity(More)
People are renowned for their failure to consider alternative hypotheses. We compare neglect of alternative causes when people make predictive versus diagnostic probability judgments. One study with medical professionals reasoning about psychopathology and two with undergraduates reasoning about goals and actions or about causal transmission yielded the(More)
In this article, we address the apparent discrepancy between causal Bayes net theories of cognition, which posit that judgments of uncertainty are generated from causal beliefs in a way that respects the norms of probability, and evidence that probability judgments based on causal beliefs are systematically in error. One purported source of bias is the ease(More)
How do people learn causal structure? In 2 studies, the authors investigated the interplay between temporal-order, intervention, and covariational cues. In Study 1, temporal order overrode covariation information, leading to spurious causal inferences when the temporal cues were misleading. In Study 2, both temporal order and intervention contributed to(More)
People often hold extreme political attitudes about complex policies. We hypothesized that people typically know less about such policies than they think they do (the illusion of explanatory depth) and that polarized attitudes are enabled by simplistic causal models. Asking people to explain policies in detail both undermined the illusion of explanatory(More)