Steven A. Moore

Learn More
This study characterizes an animal model of persistent mechanical hyperalgesia induced by repeated intramuscular injections of low pH saline. Saline at pH 4, 5, 6, or 7.2 was injected twice, 2 to 10 days apart, into the gastrocnemius muscle of rats. To quantify hyperalgesia, paw withdrawal latency to radiant heat (heat hyperalgesia) and withdrawal threshold(More)
Fukuyama congenital muscular dystrophy (FCMD), muscle-eye-brain disease (MEB), and Walker-Warburg syndrome are congenital muscular dystrophies (CMDs) with associated developmental brain defects. Mutations reported in genes of FCMD and MEB patients suggest that the genes may be involved in protein glycosylation. Dystroglycan is a highly glycosylated(More)
Dystroglycan is a central component of the dystrophin-glycoprotein complex implicated in the pathogenesis of several neuromuscular diseases. Although dystroglycan is expressed by Schwann cells, its normal peripheral nerve functions are unknown. Here we show that selective deletion of Schwann cell dystroglycan results in slowed nerve conduction and nodal(More)
Muscle eye brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD) are congenital muscular dystrophies with associated, similar brain malformations. The FCMD gene, fukutin, shares some homology with fringe-like glycosyltransferases, and the MEB gene, POMGnT1, seems to be a new glycosyltransferase. Here we show, in both MEB and FCMD patients,(More)
Peroxisomal proliferator-activated receptor (PPAR)gamma has been shown to decrease the inflammatory response via transrepression of proinflammatory transcription factors. However, the identity of PPARgamma responsive genes that decrease the inflammatory response has remained elusive. Because generation of the reactive oxygen species hydrogen peroxide(More)
Limb-girdle muscular dystrophy type 2D (LGMD 2D) is an autosomal recessive disorder caused by mutations in the alpha-sarcoglycan gene. To determine how alpha-sarcoglycan deficiency leads to muscle fiber degeneration, we generated and analyzed alpha-sarcoglycan- deficient mice. Sgca-null mice developed progressive muscular dystrophy and, in contrast to other(More)
Walker-Warburg syndrome (WWS) is clinically defined as congenital muscular dystrophy that is accompanied by a variety of brain and eye malformations. It represents the most severe clinical phenotype in a spectrum of diseases associated with abnormal post-translational processing of a-dystroglycan that share a defect in laminin-binding glycan synthesis1.(More)
Nodes of Ranvier are specialized axonal domains, at which voltage-gated sodium channels cluster. How axons cluster molecules in discrete domains is mostly unknown. Both axons and glia probably provide constraining mechanisms that contribute to domain formation. Proper sodium channel clustering in peripheral nerves depends on contact from Schwann cell(More)
Several congenital muscular dystrophies caused by defects in known or putative glycosyltransferases are commonly associated with hypoglycosylation of alpha-dystroglycan (alpha-DG) and a marked reduction of its receptor function. We have investigated changes in the processing and function of alpha-DG resulting from genetic manipulation of LARGE, the putative(More)
BACKGROUND & AIMS Interleukin (IL)-10 is an anti-inflammatory and immune regulatory cytokine. IL-10-deficient mice (IL-10(-/-)) develop chronic inflammatory bowel disease (IBD), indicating that endogenous IL-10 is a central regulator of the mucosal immune response. Prostaglandins are lipid mediators that may be important mediators of intestinal(More)