Steven A Huntley

Learn More
The charge-membrane voltage (Q-V) distribution of wild-type rabbit Na(+)/glucose transporter (rSGLT1) expressed in Xenopus oocytes was investigated in the absence of glucose, using the two-electrode voltage-clamp technique. Although this distribution is generally believed to be well represented by a two-state Boltzmann equation, we recently provided(More)
Positions 163, 166, and 173, within the putative external loop joining transmembrane segments IV and V of rabbit Na(+)/glucose cotransporter, form part of its Na(+) interaction and voltage-sensing domain. Since a Q170C mutation within this region exhibits anomalous behavior, its function was further investigated. We used Xenopus oocytes coinjected with(More)
Using cysteine mutagenesis and chemical modification by methanethiosulfonate derivatives, it was demonstrated that the external putative loop, joining transmembrane segments (TM's) IV-V of rabbit Na+/glucose cotransporter, rSGLT1, forms part of a Na+ binding and voltage sensing domain. Within this region, exposure to cationic(More)
  • 1