Learn More
The initiation and coordination of activity in limb muscles are the main functions of neural circuits that control locomotion. Commissural neurons connect locomotor circuits on the two sides of the spinal cord, and represent the known neural substrate for left-right coordination. Here we demonstrate that a group of ipsilateral interneurons, V2a(More)
Many animals are capable of changing gait with speed of locomotion. The neural basis of gait control and its dependence on speed are not fully understood. Mice normally use a single "trotting" gait while running at all speeds, either over ground or on a treadmill. Transgenic mouse mutants in which the trotting is replaced by hopping also lack a(More)
The V2a class of Chx10-expressing interneurons has been implicated in frequency-dependent control of left-right phase during locomotion in the mouse. We have used the Chx10::CFP mouse line to further investigate the properties and locomotion-related activity of V2a interneurons in the isolated neonatal spinal cord. V2a interneurons can be divided into three(More)
The Cre/loxP system is increasingly showing promise for investigating genes involved in neural function. Here, we demonstrate that in vivo modification of genes in the mouse brain can be accomplished in a spatial- and temporal-specific manner by targeted delivery of an adeno-associated virus (AAV) encoding a green fluorescent protein/Cre recombinase(More)
We utilized the Cre-LoxP system to establish erbB2 conditional mutant mice in order to investigate the role of erbB2 in postnatal development of the enteric nervous system. The erbB2/nestin-Cre conditional mutants exhibit retarded growth, distended colons, and premature death, resembling human Hirschsprung's disease. Enteric neurons and glia are present at(More)
Neural crest stem cells (NCSCs) persist in peripheral nerves throughout late gestation but their function is unknown. Current models of nerve development only consider the generation of Schwann cells from neural crest, but the presence of NCSCs raises the possibility of multilineage differentiation. We performed Cre-recombinase fate mapping to determine(More)
Alternate activation of antagonistic muscles across a joint is essential for movement. A new study, by Talpalar et al., in this issue of Neuron highlights the importance of spinal cord inhibitory interneurons in generating motor activity by showing that they can generate alternating flexor-extensor motor neuron firing in the absence of glutamatergic(More)
Neural networks called central pattern generators (CPGs) generate repetitive motor behaviors such as locomotion and breathing. Glutamatergic neurons are required for the generation and inhibitory neurons for the patterning of the motor activity associated with repetitive motor behaviors. In the mouse, glutamatergic V2a neurons coordinate the activity of(More)
Inspiratory accessory respiratory muscles (ARMs) enhance ventilation when demands are high, such as during exercise and/or pathological conditions. Despite progressive degeneration of phrenic motor neurons innervating the diaphragm, amyotrophic lateral sclerosis (ALS) patients and rodent models are able to maintain ventilation at early stages of disease. In(More)
  • 1