Learn More
We have cloned and characterized a novel mammalian serine/threonine protein kinase WNK1 (with no lysine (K)) from a rat brain cDNA library. WNK1 has 2126 amino acids and can be detected as a protein of approximately 230 kDa in various cell lines and rat tissues. WNK1 contains a small N-terminal domain followed by the kinase domain and a long C-terminal(More)
WNK family protein kinases are large enzymes that contain the catalytic lysine in a unique position compared with all other protein kinases. These enzymes have been linked to a genetically defined form of hypertension. In this study we introduced mutations to test hypotheses about the position of the catalytic lysine, and we examined mechanisms involved in(More)
PAKs are serine/threonine protein kinases that are activated by binding to Rac or Cdc42hs. Different forms of activated PAK1 have been reported to either promote membrane ruffling and focal adhesion assembly or cause focal adhesion disassembly and stress fiber dissolution. To understand the basis for these distinct morphological effects, we have examined(More)
WNK1 belongs to a unique protein kinase family that lacks the catalytic lysine in its normal position. Mutations in human WNK1 and WNK4 have been implicated in causing a familial form of hypertension. Here we report that overexpression of WNK1 led to increased activity of cotransfected ERK5 in HEK293 cells. ERK5 activation was blocked by the MEK5 inhibitor(More)
SLC26A9 is a member of the SLC26 family of anion transporters, which is expressed at high levels in airway and gastric surface epithelial cells. The transport properties and regulation of SLC26A9, and thus its physiological function, are not known. Here we report that SLC26A9 is a highly selective Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability that(More)
WNK (with no lysine [K]) kinases are serine-threonine protein kinases with an atypical placement of the catalytic lysine. Intronic deletions increase the expression of WNK1 in humans and cause pseudohypoaldosteronism type II, a form of hypertension. WNKs have been linked to ion carriers, but the underlying regulatory mechanisms are unknown. Here, we report(More)
MAP kinases transduce signals that are involved in a multitude of cellular pathways and functions in response to a variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases ranging from cancer to inflammatory disease to obesity and diabetes. In many cell types, the MAPKs ERK1/2 are linked to cell(More)
WNKs (with no lysine (K)), unique serine/threonine protein kinases, have been best studied in the context of cell volume regulation and ion homeostasis. Here we describe a biological link between WNKs and transforming growth factor (TGF) beta-Smad signaling. Both WNK1 and WNK4 directly bind to and phosphorylate Smad2. Knockdown of WNK1 in HeLa cells using(More)
Docking between MEK1 and ERK2 is required for their stable interaction and efficient signal transmission. The MEK1 N terminus contains the ERK docking or D domain that consists of conserved hydrophobic and basic residues. We mutated the hydrophobic and basic residues individually and found that loss of either type reduced MEK1 phosphorylation of ERK2 in(More)
The p21-activated kinase (PAK1) is a serine-threonine protein kinase that is activated by binding to the Rho family small G proteins Rac and Cdc42hs. Both Rac and Cdc42hs have been shown to regulate the activity of the transcription factor NFkappaB. Here we show that expression of active Ras, Raf-1, or Rac1 in fibroblasts stimulates NFkappaB in a(More)