Steve Schulz

Learn More
β-Defensins are antibiotic peptides involved in host defense at the epithelial surface. Three human β-defensins (hBDs)--hBD-1, hBD-2, and hBD-3--have been identified so far. We have characterized a new member of the β-defensin family, hBD-4, based on screening of genomic sequences and subsequent functional analysis. In contrast to hBD-1, hBD-2, and hBD-3,(More)
Previous studies have shown the implication of beta-defensins in host defense of the human body. The human beta-defensins 1 and 2 (hBD-1, hBD-2) have been isolated by biochemical methods. Here we report the identification of a third human beta-defensin, called human beta-defensin 3 (hBD-3; cDNA sequence, Genbank accession no. AF295370), based on(More)
The Gram-negative bacterial plant pathogen Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject bacterial effector proteins into the host cell cytoplasm. One essential pathogenicity factor is HrpB2, which is secreted by the T3S system. We show that secretion of HrpB2 is suppressed by HpaC, which was previously(More)
Pathogenicity of Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into eukaryotic cells and is associated with an extracellular pilus and a translocon in the host plasma membrane. T3S substrate specificity is controlled by the cytoplasmic switch protein HpaC, which interacts with the(More)
Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation,(More)
UNLABELLED The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate effector proteins into plant cells. The T3S apparatus spans both bacterial membranes and is associated with an extracellular pilus and a channel-like translocon in the host plasma membrane. T3S is controlled by the switch(More)
  • 1