Learn More
The phosphoinositide 3-kinase (PI3K) family is important to nearly all aspects of cell and tissue biology and central to human cancer, diabetes and aging. PI3Ks are spatially regulated and multifunctional, and together, act at nearly all membranes in the cell to regulate a wide range of signaling, membrane trafficking and metabolic processes. There is a(More)
Cells rely on the coordinated regulation of lipid phosphoinositides and Rab GTPases to define membrane compartment fates along distinct trafficking routes. The family of disease-related myotubularin (MTM) phosphoinositide phosphatases includes catalytically inactive members, or pseudophosphatases, with poorly understood functions. We found that Drosophila(More)
Membrane trafficking relies on dynamic changes in membrane identities that are determined by the regulation of distinct RAB GTPases and phosphoinositides. RABs and phosphoinositides both act to spatiotemporally recruit effectors of membrane remodelling, including sequential RAB and phosphoinositide activities. New ideas on coordinated regulation of specific(More)
Reversible phosphoinositide phosphorylation provides a dynamic membrane code that balances opposing cell functions. However, in vivo regulatory relationships between specific kinases, phosphatases, and phosphoinositide subpools are not clear. We identified myotubularin (mtm), a Drosophila melanogaster MTM1/MTMR2 phosphoinositide phosphatase, as necessary(More)
Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and(More)
Transmembrane proteins are rarely exclusively localized to a specific vesicle or an organelle. Most transmembrane proteins undergo complicated trafficking routes. Thus, transmembrane proteins are under constant flux, and at steady state, found on a variety of vesicles or organelles. This characteristic makes the study of their trafficking routes complex,(More)
  • 1