Steve J. Elliott

Learn More
The effect of the biological oxidant H2O2 on purinergic-receptor-stimulated Ca2+ signalling was determined in canine venous endothelial cells. H2O2 increased cytosolic free [Ca2+] ([Ca2+]i), the rate of rise of which was dose-dependently related to H2O2 concentration. The response of [Ca2+]i to H2O2 resulted in part from release of Ca2+ from internal(More)
On reperfusion of ischemic tissue, a prolonged phase of vasoconstriction occurs, the mechanism of which is poorly understood. However, it is known that peroxynitrite (ONOO-) is formed during reperfusion. In this study the contractile properties of ONOO- were investigated in Wistar rat middle cerebral arteries. The effects of ONOO- on vessel diameter were(More)
1. The oxidant, tert-butylhydroperoxide (tBuOOH) depolarizes calf pulmonary artery endothelial cells by activating a non-selective cation channel. To identify the molecular mediator of channel activation during oxidant stress, the patch-clamp technique was used to compare tBuOOH-induced changes in membrane potential and channel activity with those induced(More)
Oxidant stress induced by t-butyl hydroperoxide (t-BuOOH) inhibits bradykinin-stimulated Ca2+ signalling in vascular endothelial cells. The effect of t-BuOOH on intracellular Ca2+ pools was determined by addition of Ca(2+)-releasing agents to fura-2-loaded cells suspended in Ca(2+)-free/EGTA buffer. In control cells, sequential additions of bradykinin and(More)
Peroxynitrite (ONOO(-)) is a contractile agonist of rat middle cerebral arteries. To determine the mechanism responsible for this component of ONOO(-) bioactivity, the present study examined the effect of ONOO(-) on ionic current and channel activity in rat cerebral arteries. Whole cell recordings of voltage-clamped cells were made under conditions designed(More)
OBJECTIVE Xanthine oxidase inhibits agonist-stimulated Ca2+ signaling in calf pulmonary artery endothelial cells by an H2O2-dependent mechanism. We investigated the effect of xanthine oxidase on luminal Ca2+ content of the inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ store. METHODS Luminal Ca2+ content was estimated from the net release of Ca2+(More)
The effect of xanthine oxidase (XO)-mediated oxidant stress on endothelial cell signal transduction was determined in bradykinin-stimulated cells loaded with the Ca+(+)-sensitive probe fura-2. Calf pulmonary artery endothelial cells were incubated with a reaction mixture containing XO (50 mU/ml) and its substrate, hypoxanthine (HX) (0.5 mM), for periods of(More)
This paper deals with Multiple Input Multiple Output systems for active control of acoustic signals. These systems are used when the acoustic eld is complex and therefore a number of sensors are necessary to estimate the sound eld and a number of sources to create the cancelling eld. A steepest descent iterative algorithm is applied to minimise the p-norm(More)
The endothelium modulates vascular tone, vasoreactivity, and permeability in response to agonist-stimulation. Much of the pathophysiology of oxidant-induced vascular injury can be attributed to endothelial cell dysfunction. In the past several years, the effects of oxidant stress on agonist-stimulated Ca(2+)-channels have been described. More recently, the(More)
Oxidized glutathione (GSSG) is endogenously formed within vascular endothelial cells. The bioactivity of GSSG results in the oxidation of protein thiol groups, leading to changes in protein structure-function relationships. When ion channel protein thiols are the target of oxidation by GSSG, important changes in channel conductance, activity, and gating(More)