Learn More
We study the rates of convergence in classification error achievable by active learning in the presence of label noise. Additionally, we study the more general problem of active learning with a nested hierarchy of hypothesis classes, and propose an algorithm whose error rate provably converges to the best achievable error among classifiers in the hierarchy(More)
We describe and explore a new perspective on the sample complexity of active learning. In many situations where it was generally believed that active learning does not help, we show that active learning does help in the limit, often with exponential improvements in sample complexity. This contrasts with the traditional analysis of active learning problems(More)
We study the theoretical advantages of active learning over passive learning. Specifically, we prove that, in noise-free classifier learning for VC classes, any passive learning algorithm can be transformed into an active learning algorithm with asymptotically strictly superior label complexity for all nontrivial target functions and distributions. We(More)
A plausible representation of relational information among entities in dynamic systems such as a living cell or a social community is a stochastic network which is topologically rewiring and semantically evolving over time. While there is a rich literature on modeling static or temporally invariant networks, much less has been done toward modeling the(More)