Steve Fuselier

Learn More
Neutral atom imaging of the interstellar gas flow in the inner heliosphere provides the most detailed information on physical conditions of the surrounding interstellar medium (ISM) and its interaction with the heliosphere. The Interstellar Boundary Explorer (IBEX) measured neutral H, He, O, and Ne for three years. We compare the He and combined O + Ne flow(More)
Comets contain the best-preserved material from the very beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early Solar system when comets formed. ROSINA/DFMS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis / Double Focusing Mass Spectrometer) onboard the Rosetta(More)
Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora, the footprint of magnetospheric regions. To assure the simultaneity of these observations and the measurement of the magnetospheric background neutral gas density, the IMAGE satellite instrument complement includes three Far Ultraviolet(More)
The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere’s interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth’s magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ~10 eV(More)
[1] The first all‐sky maps of Energetic Neutral Atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) exhibited smoothly varying, globally distributed flux and a narrow “ribbon” of enhanced ENA emissions. In this study we compare the second set of sky maps to the first in order to assess the possibility of temporal changes over the 6 months between(More)
[1] Decades of interplanetary measurements of the solar wind and other space plasmas have established that the suprathermal ion intensity distributions (j) are non-Maxwellian and are characterized by high-energy power law tails (j E ). Recent analysis by Fisk and Gloeckler of suprathermal ion observations between 1–5 AU demonstrates that a particular(More)
Little is known about the noble gas abundances in comets. These highly volatile atoms are possible tracers of the history of cometary matter including the thermal evolution. They can help quantify the contribution of cometary impacts to terrestrial oceans and help elucidate on the formation history of comets and their role in the formation and evolution of(More)
We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for 47 innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar48 Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal 49 magnetic fields drive eruptions, mass transport and particle acceleration that(More)
We examine the evolution of the water production of comet 67P/Churyumov–Gerasimenko during the Rosetta mission (2014 June–2016 May) based on in situ and remote sensing measurements made by Rosetta instruments, Earth-based telescopes and through the development of an empirical coma model. The derivation of the empirical model is described and the model is(More)
The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature(More)