Steve E Durham

Learn More
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a(More)
Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point(More)
Recent evidence suggests that polymorphic genetic variation in the non-coding region of mitochondrial DNA (the 16184-16193 polycytosine [poly-C] tract) contributes to the cause of type 2 diabetes, but previous studies only just reached significance. We aimed to investigate this association. We compared patients with type 2 diabetes (n=992) with two(More)
DNA polymerase gamma (pol gamma ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol gamma (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant(More)
Mitochondrial DNA (mtDNA) mutations are a common cause of human disease and accumulate as part of normal ageing and in common neurodegenerative disorders. Cells express a biochemical defect only when the proportion of mutated mtDNA exceeds a critical threshold, but it is not clear whether the actual cause of this defect is a loss of wild-type mtDNA, an(More)
BACKGROUND The 3243A-->G MTTL1 mutation is the most common heteroplasmic mitochondrial DNA (mtDNA) mutation associated with disease. Previous studies have shown that the percentage of mutated mtDNA decreases in blood as patients get older, but the mechanisms behind this remain unclear. OBJECTIVES AND METHOD To understand the dynamics of the process and(More)
The authors studied seven patients with mitochondrial DNA (mtDNA) myopathy. Over time, there was a progressive depletion of mtDNA, which preferentially affected wild-type mitochondrial genomes. This suggests that loss of wild-type mtDNA is a major feature of mtDNA myopathy, and preventing wild-type mtDNA depletion has treatment implications.
The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules(More)
Mitochondrial DNA (mtDNA) mutations accumulate in the skeletal muscle of patients with mtDNA disease, and also as part of healthy ageing. Simulations of human muscle fibres suggest that, over many decades, the continuous destruction and copying of mtDNA (relaxed replication) can lead to dramatic changes in the percentage level of mutant mtDNA in(More)
Background: The 3243ARG MTTL1 mutation is the most common heteroplasmic mitochondrial DNA (mtDNA) mutation associated with disease. Previous studies have shown that the percentage of mutated mtDNA decreases in blood as patients get older, but the mechanisms behind this remain unclear. Objectives and method: To understand the dynamics of the process and the(More)