Steve Aston

Learn More
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the(More)
Citation Abbott, B. et al. (LIGO Scientific Collaboration). "Observation of a kilogram-scale oscillator near its quantum ground state. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. We introduce a novel cooling technique capable of approaching the quantum ground state of a(More)
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of(More)
To meet the overall isolation and alignment requirements for the optics in Advanced LIGO, the planned upgrade to LIGO, the US laser interferometric gravitational wave observatory, we are developing three subsystems: a hydraulic external pre-isolator for low frequency alignment and control, a two-stage active isolation platform designed to give a factor of(More)
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter(More)
We present a LIGO search for short-duration gravitational waves (GWs) associated with soft gamma ray repeater (SGR) bursts. This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from(More)
(Affiliations can be found after the references in the electronic version) ABSTRACT Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and(More)
A search for periodic gravitational waves, from sources such as isolated rapidly-spinning neutron stars, was carried out using 510 hours of data from the fourth LIGO science run (S4). The search was for quasi-monochromatic waves in the frequency range from 50 Hz to 1500 Hz, with a linear frequency drift ˙ f (measured at the solar system barycenter) in the(More)