Learn More
Angiogenesis depends on both cell adhesion and proteolytic mechanisms. In fact, matrix metalloproteinase 2 (MMP-2) and integrin alphavbeta3 are functionally associated on the surface of angiogenic blood vessels. A fragment of MMP-2, which comprises the C-terminal hemopexin-like domain, termed PEX, prevents this enzyme binding to alphavbeta3 and blocks cell(More)
L1 is a neural recognition molecule that promotes neural developmental and regenerative processes. Posttranslational cleavage of L1 is believed to be important for regulating its function in vivo, but little is known of the proteolytic systems responsible. In this study we present evidence that plasmin can regulate both L1 expression and function. The(More)
Matrix metalloproteinase 2 (MMP2) can associate with integrin alpha(v)beta3 on the surface of endothelial cells, thereby promoting vascular invasion. Here, we describe an organic molecule (TSRI265) selected for its ability to bind to integrin alphav(v)beta3 and block alpha(v)beta3 interaction with MMP2. Although disrupting alpha(v)beta3/MMP2 complex(More)
L1 is a multidomain transmembrane neural recognition molecule essential for neurohistogenesis. While moieties in the immunoglobulin-like domains of L1 have been implicated in both heterophilic and homophilic binding, the function of the fibronectin (FN)-like repeats remains largely unresolved. Here, we demonstrate that the third FN-like repeat of L1 (FN3)(More)
Modulation of the balance between pro- and antiangiogenic factors holds great promise for the treatment of a broad spectrum of human disease ranging from ischemic heart disease to cancer. This requires both the identification of angiogenic regulators and their efficient delivery to target organs. Here, we demonstrate the use of a noncatalytic fragment of(More)
Autocrine motility factor (AMF) is a tumor-secreted cytokine that acts as a motogen as well as a mitogen via a receptor-mediated signaling pathway(s). Expression of the AMF receptor (AMF-R) in normal cells is regulated by cell contact whereas in transformed cells AMF-R is constitutively expressed irrespective of cell density. Here we have analyzed the(More)
Netrins, axon guidance cues in the CNS, have also been detected in epithelial tissues. In this study, using the embryonic pancreas as a model system, we show that Netrin-1 is expressed in a discrete population of epithelial cells, localizes to basal membranes, and specifically associates with elements of the extracellular matrix. We demonstrate that(More)
The cell adhesion molecule L1 has been implicated in a variety of motile processes, including neurite extension, cerebellar cell migration, extravasation, and metastasis. Homophilic or heterophilic L1 binding and concomitant signaling have been shown to promote cell motility in the short term. In this report, L1 is also shown to induce and maintain a motile(More)
Tumor autocrine motility factor (AMF) is a cytokine which stimulates both random and directed cell migration by self-producing cells. AMF has been detected in and purified from serum-free conditioned medium of murine B16-F1 melanoma cells. Under nonreducing conditions AMF migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band(More)
Tumor autocrine motility factor (AMF) has been detected in and purified from serum-free conditioned medium of human HT-1080 fibrosarcoma cells. Under nonreducing conditions, AMF migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band of 55 kDa but under reducing conditions as a band of 64 kDa. Two-dimensional polyacrylamide(More)