Learn More
L1 is a multidomain transmembrane neural recognition molecule essential for neurohistogenesis. While moieties in the immunoglobulin-like domains of L1 have been implicated in both heterophilic and homophilic binding, the function of the fibronectin (FN)-like repeats remains largely unresolved. Here, we demonstrate that the third FN-like repeat of L1 (FN3)(More)
Angiogenesis depends on both cell adhesion and proteolytic mechanisms. In fact, matrix metalloproteinase 2 (MMP-2) and integrin alphavbeta3 are functionally associated on the surface of angiogenic blood vessels. A fragment of MMP-2, which comprises the C-terminal hemopexin-like domain, termed PEX, prevents this enzyme binding to alphavbeta3 and blocks cell(More)
The neural cell adhesion molecule L1 has been shown to function as a homophilic ligand in a variety of dynamic neurological processes. Here we demonstrate that the sixth immunoglobulin-like domain of human L1 (L1-Ig6) can function as a heterophilic ligand for multiple members of the integrin superfamily including alphavbeta3, alphavbeta1, alpha5beta1, and(More)
Lymphocytes accumulate within the extracellular matrix (ECM) of tumor, wound, or inflammatory tissues. These tissues are largely comprised of polymerized adhesion proteins such as fibrin and fibronectin or their fragments. Nonactivated lymphoid cells attach preferentially to polymerized ECM proteins yet are unable to attach to monomeric forms or fragments(More)
Previous reports demonstrate that the α2-integrin (α2) mediates pancreatic ductal adenocarcinoma (PDAC) cell interactions with collagens. We found that while well-differentiated cells use α2 exclusively to adhere and migrate on collagenI, poorly differentiated PDAC cells demonstrate reduced reliance on, or complete loss of, α2. Since well-differentiated(More)
Previous reports on the expression of the cell adhesion molecule L1 in pancreatic ductal adenocarcinoma (PDAC) cells range from absent to high. Our data demonstrate that L1 is expressed in poorly differentiated PDAC cells in situ and that threonine-1172 (T1172) in the L1 cytoplasmic domain exhibits steady-state saturated phosphorylation in PDAC cells in(More)
The neural cell adhesion molecule L1 has recently been shown to be expressed in pancreatic adenocarcinoma (PDAC) cells. In this report, we demonstrate that L1 is expressed by moderately- to poorly-differentiated PDAC cells in situ, and that L1 expression is a predictor of poor patient survival. In vitro, reduced reactivity of an anti-L1(More)
  • 1