Steve A. Munoz

Learn More
Although fracture healing is frequently studied in pre-clinical models of long bone fractures using rodents, there is a dearth of objective quantitative techniques to assess successful healing. Biomechanical testing is possibly the most quantitative and relevant to a successful clinical outcome, but it is a destructive technique providing little insight(More)
Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental(More)
Parathyroid hormone-related peptide (PTHrP) is a major factor involved in tumor-induced osteolysis caused by breast cancers that have metastasized to bone. However, the molecular mechanisms that mediate PTHrP production by breast cancer cells are not entirely clear. We hypothesized that Gli2, a downstream transcriptional effector of the Hedgehog (Hh)(More)
Recent data have implicated macrophage inflammatory protein-1alpha (MIP-1alpha) in multiple myeloma (MM)-associated osteolysis. However, it is unclear whether the chemokine's effects are direct, to enhance osteolysis, or indirect and mediated through a reduction in tumor burden, or both. It is also unclear whether MIP-1alpha requires other factors such as(More)
Development of new therapies for myeloma has been hindered by the lack of suitable preclinical animal models of the disease in which widespread tumor foci in the skeleton can be detected reliably. Traditional means of detecting skeletal tumor infiltration such as histopathology are cumbersome and labor-intensive and do not allow temporal monitoring of tumor(More)
Impaired bone formation contributes to the lack of bone healing in multiple myeloma and there is a need for agents with bone anabolic properties to reverse the bone deficit in patients. Bortezomib, a proteasome inhibitor with antitumour efficacy in myeloma patients, enhanced new bone formation in mouse calvarial cultures; this effect was blocked by dickkopf(More)
The majority of breast cancer and prostate cancer patients with metastatic disease will go on to develop bone metastases, which contribute largely to the patient's morbidity and mortality. Numerous small animal models of cancer metastasis to bone have been developed to study tumor-induced bone destruction, but the advancement of imaging modalities utilized(More)
Treatment of multiple myeloma with bortezomib can result in severe adverse effects, necessitating the development of targeted inhibitors of the proteasome. We show that stable expression of a dominant-negative F-box deleted (∆F) mutant of the E3 ubiquitin ligase, SCFβ-TrCP/FWD1, in murine 5TGM1 myeloma cells dramatically attenuated their skeletal(More)
Parathyroid hormone-related peptide (PTHrP) is a major factor involved in tumor-induced osteolysis caused by breast cancers that have metastasized to bone. However, the molecular mechanisms that mediate PTHrP production by breast cancer cells are not entirely clear. We hypothesized that Gli2, a downstream transcriptional effector of the Hedgehog (Hh)(More)
  • 1