Sterling B. Ortega

Learn More
CD4(+)CD25(+)FOXP3(+) regulatory T-cells (T(regs)) form an important arm of the immune system responsible for suppressing untoward immune responses. T(regs) can be thymically derived or peripherally induced, even from CD4(+)CD25(-)FOXP3(-) T-cells. FOXP3 expression and in vitro suppressive activity are considered unique hallmarks of this dedicated and(More)
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) with features suggestive of T-cell-mediated pathology. Most prior reports have focused on CD4(+) T cells with the underlying assumption that MS is predominantly a CD4(+) T helper 1 (Th1)-mediated disease. In this report, we used a novel flow cytometric(More)
In the setting of autoimmunity, one of the goals of successful therapeutic immune modulation is the induction of peripheral tolerance, a large part of which is mediated by regulatory/suppressor T cells. In this report, we demonstrate a novel immunomodulatory mechanism by an FDA-approved, exogenous peptide-based therapy that incites an HLA class(More)
Immune-based self-recognition and failure to modulate this response are believed to contribute to the debilitating autoimmune pathology observed in multiple sclerosis (MS). Studies from its murine model, experimental autoimmune encephalomyelitis (EAE), have shown that neuroantigen-specific CD4+T cells are capable of inducing disease, while their immune(More)
Repetitive hypoxic preconditioning (RHP) creates an anti-inflammatory phenotype that protects from stroke-induced injury for months after a 2-week treatment. The mechanisms underlying long-term tolerance are unknown, though one exposure to hypoxia significantly increased peripheral B cell representation. For this study, we sought to determine if RHP(More)
We have demonstrated that GA therapy induces a differential upregulation of GA-specific, cytotoxic/suppressor CD8+ T-cell responses in MS patients. We utilized a novel combination of flow sorting and anchored PCR to analyze the evolving clonal composition of GA-specific CD4+ and CD8+ T-cells. TCRbeta chain analysis revealed the development of an oligoclonal(More)
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS, and CD8 T cells are the predominant T cell population in MS lesions. Given that transfer of CNS-specific CD8 T cells results in an attenuated clinical demyelinating disease in C57BL/6 mice with immunization-induced experimental autoimmune encephalomyelitis (EAE), we investigated(More)
Stroke affects millions of people worldwide every year. Despite this prevalence, mechanisms of long-term injury and repair within the ischemic brain are still understudied. Sterile inflammation occurs in the injured brain after stroke, with damaged tissue exposing central nervous system (CNS)-derived antigen that could initiate potential autoimmune(More)
Repetitive hypoxic preconditioning creates long-lasting, endogenous protection in a mouse model of stroke, characterized by reductions in leukocyte-endothelial adherence, inflammation, and infarct volumes. The constitutively expressed chemokine CXCL12 can be upregulated by hypoxia and limits leukocyte entry into brain parenchyma during central nervous(More)
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS). MS is thought to be T-cell-mediated, with prior research predominantly focusing on CD4+ T-cells. There is a high prevalence of CNS-specific CD8+ T-cell responses in MS patients and healthy subjects. However, the role of neuroantigen-specific CD8+ T-cells(More)