Learn More
Novel methods improve prediction of species' distributions from occurrence data. Á/ Ecography 29: 129 Á/151. Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on(More)
World-Wide Web proxy servers that cache documents can potentially reduce three quantities: the number of requests that reach popular servers, the volume of network traffic resulting from document requests, and the latency that an end-user experiences in retrieving a document. This paper examines the first two using the measures of cache hit rate and(More)
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human(More)
This paper presents a new approach for high-rate information fusion in modern inertial navigation systems, that have a variety of sensors operating at different frequencies. Optimal information fusion corresponds to calculating the maximum a posteriori estimate over the joint probability distribution function (pdf) of all states, a computationally-expensive(More)
This paper describes a new approach for information fusion in inertial navigation systems. In contrast to the commonly used filtering techniques, the proposed approach is based on a non-linear optimization for processing incoming measurements from the inertial measurement unit (IMU) and any other available sensors into a navigation solution. A factor graph(More)
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO­OSS­01. The(More)
This paper proposes a navigation algorithm that provides a low-latency solution while estimating the full nonlinear navigation state. Our approach uses Sliding-Window Factor Graphs, which extend existing incremental smoothing methods to operate on the subset of measurements and states that exist inside a sliding time window. We split the estimation into a(More)
—Satellite-based instruments are now routinely used to map the surface of the globe or monitor weather conditions. However , these orbital measurements of ground-based quantities are heavily influenced by external factors, such as air moisture content or surface emissivity. Detailed atmospheric models are created to compensate for these factors, but the(More)
This paper presents a novel algorithm for integrating real-time filtering of navigation data with full map/trajectory smoothing. Unlike conventional mapping strategies, the result of loop closures within the smoother serve to correct the real-time navigation solution in addition to the map. This solution views filtering and smoothing as different operations(More)