Stephen Wedgwood

Learn More
Similar to infants born with persistent pulmonary hypertension of the newborn (PPHN), there is an increase in circulating endothelin-1 (ET-1) and decreased endothelial nitric oxide synthase (eNOS) gene expression in an ovine model of PPHN. These abnormalities lead to vasoconstriction and vascular remodeling. Our previous studies have demonstrated that(More)
In the pulmonary vasculature, phosphodiesterase-5 (PDE5) degrades cGMP and inhibits nitric oxide-mediated, cGMP-dependent vasorelaxation. We previously reported that ventilation with 100% O2 increased PDE5 activity in pulmonary arteries (PAs) of pulmonary hypertension lambs (PPHN) more than in control lambs. In the present study, PA smooth muscle cells(More)
In the pulmonary vasculature, mechanical forces such as cyclic stretch induce changes in vascular signaling, tone and remodeling. Nitric oxide is a potent regulator of soluble guanylate cyclase (sGC), which drives cGMP production, causing vasorelaxation. Pulmonary artery smooth muscle cells (PASMCs) express inducible nitric oxide synthase (iNOS), and while(More)
BACKGROUND Mitochondrial reactive oxygen species (ROS) levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activity are increased in a lamb model of persistent pulmonary hypertension of the newborn (PPHN). These events can trigger hypoxia inducible factor (HIF) signaling in response to hypoxia, which has been shown to contribute(More)
2 ABSTRACT In this study we explore the roles of the delta isoform of PKC (PKC) in the regulation of eNOS activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacologic inhibition of PKC with either rottlerin or with the peptide, V1-1 acutely attenuated NO production and this was associated with a decrease in(More)
  • 1