#### Filter Results:

- Full text PDF available (9)

#### Publication Year

1998

2008

- This year (0)
- Last 5 years (0)
- Last 10 years (1)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- David Andrew Benson, Stephen W. Wheatcraft, Charles Caleb Colton, Scott Tyler, Britt Jacobson
- 1998

The traditional 2ndorder advectiondispersion equation (ADE) does not adequately describe the movement of solute tracers in aquifers. This study examines and rederives the governing equation. The analysis starts with a generalized notion of particle movements, since the secondorder equation is trying to impart Brownian motion on a mathematical plume at any… (More)

The macrodispersion experiments (MADE) at the Columbus Air Force Base in Mississippi were conducted in a highly heterogeneous aquifer that violates the basic assumptions of local second-order theories. A governing equation that describes particles that undergo Lévy motion, rather than Brownian motion, readily describes the highly skewed and heavy-tailed… (More)

A transport equation that uses fractional-order dispersion derivatives has fundamental solutions that are Lévy’s a-stable densities. These densities represent plumes that spread proportional to time, have heavy tails, and incorporate any degree of skewness. The equation is parsimonious since the dispersion parameter is not a function of time or distance.… (More)

A governing equation of stable random walks is developed in one dimension. This Fokker-Planck equation is similar to, and contains as a subset, the second-order advection dispersion equation (ADE) except that the order (a) of the highest derivative is fractional (e.g., the 1.65th derivative). Fundamental solutions are Lévy’s a-stable densities that resemble… (More)

A mathematical method called subordination broadens the applicability of the classical advection--dispersion equation for contaminant transport. In this method, the time variable is randomized to represent the operational time experienced by different particles. In a highly heterogeneous aquifer, the operational time captures the fractal properties of the… (More)

The traditional conservation of mass equation is derived using a first-order Taylor series to represent flux change in a control volume, which is valid strictly for cases of linear changes in flux through the control volume. We show that using higher-order Taylor series approximations for the mass flux results in mass conservation equations that are… (More)

- R Schumer, D A Benson, M M Meerschaert, S W Wheatcraft
- Journal of contaminant hydrology
- 2001

A fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the second-order derivative is replaced with a fractional-order derivative. In contrast to the classical ADE, the fractional ADE has solutions that resemble the highly skewed and heavy-tailed breakthrough curves observed in field and laboratory studies. These… (More)

We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection–dispersion equation for flow in heterogeneous porous media. r 2005… (More)

- Danelle D Clarke, Mark M Meerschaert, Stephen W Wheatcraft
- Ground water
- 2005

Alternative fractional models of contaminant transport lead to a new travel time formula for arbitrary concentration levels. For an evolving contaminant plume in a highly heterogeneous aquifer, the new formula predicts much earlier arrival at low concentrations. Travel times of contaminant fronts and plumes are often obtained from Darcy's law calculations… (More)

- ‹
- 1
- ›