Stephen W. Schaeffer

Learn More
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae,(More)
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a(More)
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major(More)
In Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster, codon bias may be maintained by a balance among mutation pressure, genetic drift, and natural selection favoring translationally superior codons. Under such an evolutionary model, silent mutations fall into two fitness categories: preferred mutations that increase codon bias and(More)
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution.(More)
The alcohol dehydrogenase (Adh) locus (ADH; alcohol: NAD+ oxidoreductase, EC of Drosophila pseudoobscura was cloned and sequenced. Forty-five percent of the "effectively silent sites" have changed between Adh in D. pseudoobscura of the obscura species group and the homologous DNA sequence in D. mauritiana, the latter representing the melanogaster(More)
S-allele diversity in Solanum carolinense was surveyed in two natural populations, located in Tennessee and North Carolina, with a molecular assay to determine the genotype of individual plants. A total of 13 different S-alleles were identified and sequenced. There is high overlap between the two populations sampled, with 10 alleles shared in common, one(More)
As whole-genome sequence assemblies accumulate, a challenge is to determine how these can be used to address fundamental evolutionary questions, such as inferring the process of speciation. Here, we use the sequence assemblies of Drosophila pseudoobscura and D. persimilis to test hypotheses regarding divergence with gene flow. We observe low differentiation(More)
The alcohol dehydrogenase (Adh) region of Drosophila pseudoobscura, which includes the two genes Adh and Adh-Dup, was used to examine the pattern and organization of linkage disequilibrium among pairs of segregating nucleotide sites. A collection of 99 strains from the geographic range of D. pseudoobscura were nucleotide-sequenced with polymerase chain(More)
Positive and negative selection on indel variation may explain the correlation between intron length and recombination levels in natural populations of Drosophila. A nucleotide sequence analysis of the 3.5 kilobase sequence of the alcohol dehydrogenase (Adh) region from 139 Drosophila pseudoobscura strains and one D. miranda strain was used to determine(More)