Learn More
Introduction of autologous stem cells into the site of a nerve injury presents a promising therapy to promote axonal regeneration and remyelination following peripheral nerve damage. Given their documented ability to differentiate into Schwann cells (SCs) in vitro, we hypothesized that skin-derived precursor cells (SKPs) could represent a(More)
Animal models of nerve compression, crush, and transection injuries of peripheral nerves have been subject to extensive study in order to understand the mechanisms of injury and axon regeneration and to investigate methods to promote axon regeneration and improve functional outcomes following nerve injury. Six outcome measures of regenerative success(More)
AIM Recovery following nerve transection declines when target reconnection is delayed for prolonged periods. GDNF has previously been shown to promote motor axon regeneration following delayed nerve repair. MATERIALS & METHODS We constructed delivery systems using fibrin gels containing free GDNF or poly(lactide-co-glycolide) microspheres with GDNF. The(More)
Peripheral nerve regeneration within guidance conduits involves a critical association between regenerating axons, Schwann cells (SCs), and neovascularization. However, it is currently unknown if there is a greater association between these factors in nonpermeable versus semipermeable nerve guide conduits. We therefore examined this collaboration in both(More)
INTRODUCTION Delays in surgical repair following nerve transection produce progressively inferior motor nerve regeneration. Regeneration can be improved with delivery of exogenous growth factor. We developed a delivery system that could be applied at the nerve repair site to deliver growth factors locally to regenerating nerve. METHODS(More)
The majority of bioengineering strategies to promote peripheral nerve regeneration after injury have focused on therapies to bridge large nerve defects while fewer therapies are being developed to treat other nerve injuries, such as nerve transection. We constructed delivery systems using fibrin gels containing either free GDNF or polylactide-glycolic acid(More)
OBJECTIVE Despite the capacity for spontaneous axonal regeneration, recovery after severe peripheral nerve injury remains variable and often very poor. In addition, autologous nerve grafts, considered to be the 'gold standard' in nerve repair technique, are plagued by restricted donor tissue availability and donor site morbidity. Our primary objective is to(More)
Nerve transfer procedures involving the repair of a distal denervated nerve element with that of a foreign proximal nerve have become increasingly popular for clinical nerve repair as a surgical alternative to autologous nerve grafting. However, the functional outcomes and the central plasticity for these procedures remain poorly defined, particularly for a(More)
While peripheral nerves demonstrate the capacity for axonal regeneration, outcome following injury remains relatively poor, especially following prolonged denervation. Since axon-deprived Schwann cells (SCs) in the distal nerve progressively lose their ability to support axonal growth, we took the approach of using skin-derived precursor cells (SKPs) as an(More)
Nerve growth factor (NGF) has been previously shown to support neuron survival and direct neurite outgrowth in vitro, and to enhance axonal regeneration in vivo. However, a systematic analysis of NGF dose and dose duration on behavioral recovery following peripheral nerve injury in rodents has not been previously investigated. Here, we show that NGF(More)