Learn More
Growing wire delays will force substantive changes in the designs of large caches. Traditional cache architectures assume that each level in the cache hierarchy has a single, uniform access time. Increases in on-chip communication delays will make the hit time of large on-chip caches a function of a line's physical location within the cache. Consequently,(More)
This paper examines the effect of technology scaling and microarchitectural trends on the rate of soft errors in CMOS memory and logic circuits. We describe and validate an end-to-end model that enables us to compute the soft error rates (SER) for existing and future microprocessor-style designs. The model captures the effects of two important masking(More)
This paper describes the <b>polymorphous</b> TRIPS architecture which can be configured for different granularities and types of parallelism. TRIPS contains mechanisms that enable the processing cores and the on-chip memory system to be configured and combined in different modes for instruction, data, or thread-level parallelism. To adapt to small and(More)
<italic>The doubling of microprocessor performance every three years has been the result of two factors: more transistors per chip and superlinear scali ng of the processor clock with technology generation. Our results show that, due to both diminishing improvements in clock rates and poor wire scaling as semiconductor devices shrink, the achievable(More)
I nstruction set architectures have long lifetimes because introducing a new ISA is tremendously disruptive to all aspects of a computer system. However, slowly evolving ISAs eventually become a poor match to the rapidly changing underlying fabrication technology. When that gap eventually grows too large, the benefits gained by renormalizing the(More)
We propose an organization for the on-chip memory system of a chip multiprocessor, in which 16 processors share a 16MB pool of 256 L2 cache banks. The L2 cache is organized as a non-uniform cache architecture (NUCA) array with a switched network embedded in it for high performance. We show that this organization can support the spectrum of degrees of(More)
Microprocessor clock frequency has improved by nearly 40% annually over the past decade. This improvement has been provided, in equal measure, by smaller technologies and deeper pipelines. From our study of the SPEC 2000 benchmarks, we find that for a high-performance architecture implemented in 100nm technology, the optimal clock period is approximately 8(More)
In this paper, we survey the design space of a new class of architectures called Grid Processor Architectures (GPAs). These architectures are designed to scale with technology, allowing faster clock rates than conventional architectures while providing superior instruction-level parallelism on traditional workloads and high performance across a range of(More)