Stephen W. Byers

Learn More
Although the existence of cancer stem cells (CSCs) was first proposed over 40 years ago, only in the past decade have these cells been identified in hematological malignancies, and more recently in solid tumors that include liver, breast, prostate, brain, and colon. Constant proliferation of stem cells is a vital component in liver tissues. In these(More)
Eighteen breast cancer cell lines were examined for expression of markers of epithelial and fibroblastic differentiation: E-cadherin, desmoplakins, ZO-1, vimentin, keratin and β1 and β4 integrins. The cell lines were distributed along a spectrum of differentiation from epithelial to fibroblastic phenotypes. The most well-differentiated, epithelioid cell(More)
Several lines of evidence suggest that accumulation of cytoplasmic beta-catenin transduces an oncogenic signal. We show that beta-catenin is ubiquitinated and degraded by the proteosome and that beta-catenin stability is regulated by a diacylglycerol-independent protein kinase C-like kinase activity, which is required for beta-catenin ubiquitination. We(More)
Advancements in genomics and personalized medicine not only effect healthcare delivery from patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the '-omics', wherein an individual's genome, transcriptome, proteome and metabolome can be scrutinized to the finest resolution to paint a personalized biochemical(More)
In several cancers, including breast cancer, loss of E-cadherin expression is correlated with a loss of the epithelial phenotype and with a gain of invasiveness. Cells that have lost E-cadherin expression are either poorly invasive with a rounded phenotype, or highly invasive, with a mesenchymal phenotype. Most cells lacking E-cadherin still retain weak(More)
The signaling/oncogenic activity of beta-catenin can be repressed by activation of the vitamin D receptor (VDR). Conversely, high levels of beta-catenin can potentiate the transcriptional activity of 1,25-dihydroxyvitamin D3 (1,25D). We show here that the effects of beta-catenin on VDR activity are due to interaction between the activator function-2 (AF-2)(More)
Vitamin A derivatives (retinoids) are potent regulators of embryogenesis, cell proliferation, epithelial cell differentiation and carcinogenesis [1]. In breast cancer cells, the effects of retinoids are associated with changes in the cadherin–β-catenin adhesion and signaling system [2,3]. β-catenin is a component of the Wnt signaling pathway, which(More)
Beta-catenin is a multifunctional molecule that is activated by signaling through WNT receptors. beta-Catenin can also enhance the transcriptional activity of some steroid hormone receptors such as the androgen receptor and retinoic acid receptor alpha. Androgens can affect nuclear translocation of beta-catenin and influence its subcellular distribution.(More)
Basally located tight junctions between Sertoli cells in the postpubertal testis are the largest and most complex junctional complexes known. They form at puberty and are thought to be the major structural component of the "blood-testis" barrier. We have now examined the development of these structures in the immature mouse testis in conjunction with(More)
Even though it is among the most commonly methylated loci in multiple cancers, the retinoic acid-induced tumor suppressor retinoic acid receptor responder 1 (RARRES1) has no known function. We now show that RARRES1 is lost in many cancer cells, particularly those with a mesenchymal phenotype, and is a transmembrane carboxypeptidase inhibitor that interacts(More)