Learn More
Reliable identification of posttranslational modifications is key to understanding various cellular regulatory processes. We describe a tool, InsPecT, to identify posttranslational modifications using tandem mass spectrometry data. InsPecT constructs database filters that proved to be very successful in genomics searches. Given an MS/MS spectrum S and a(More)
Filtration techniques in the form of rapid elimination of candidate sequences while retaining the true one are key ingredients of database searches in genomics. Although SEQUEST and Mascot perform a conceptually similar task to the tool BLAST, the key algorithmic idea of BLAST (filtration) was never implemented in these tools. As a result MS/MS protein(More)
Annotation of protein-coding genes is a key goal of genome sequencing projects. In spite of tremendous recent advances in computational gene finding, comprehensive annotation remains a challenge. Peptide mass spectrometry is a powerful tool for researching the dynamic proteome and suggests an attractive approach to discover and validate protein-coding(More)
While bacterial genome annotations have significantly improved in recent years, techniques for bacterial proteome annotation (including post-translational chemical modifications, signal peptides, proteolytic events, etc.) are still in their infancy. At the same time, the number of sequenced bacterial genomes is rising sharply, far outpacing our ability to(More)
Reliable identification of post-translational modifications is key to understanding various cellular regulatory processes. We describe a tool, InsPecT, to identify post-translational modifications using tandem mass spectrometry data. InsPecT constructs database filters that proved to be very successful in genomics searches. Given an MS/MS spectrum S and a(More)
Tandem mass spectrometry (MS/MS) experiments often generate redundant data sets containing multiple spectra of the same peptides. Clustering of MS/MS spectra takes advantage of this redundancy by identifying multiple spectra of the same peptide and replacing them with a single representative spectrum. Analyzing only representative spectra results in(More)
We have employed recently developed blind modification search techniques to generate the most comprehensive map of post-translational modifications (PTMs) in human lens constructed to date. Three aged lenses, two of which had moderate cataract, and one young control lens were analyzed using multidimensional liquid chromatography mass spectrometry. In total,(More)
The central role of protein kinases in signal transduction pathways has generated intense interest in targeting these enzymes for a wide range of therapeutic indications. Here we report a method for identifying and quantifying protein kinases in any biological sample or tissue from any species. The procedure relies on acyl phosphate-containing nucleotides,(More)
Post-translational modifications (PTMs) are of great biological importance. Most existing approaches perform a restrictive search that can only take into account a few types of PTMs and ignore all others. We describe an unrestrictive PTM search algorithm that searches for all types of PTMs at once in a blind mode, i.e., without knowing which PTMs exist in a(More)
Proteins are extensively modified after translation due to cellular regulation, signal transduction, or chemical damage. Peptide tandem mass spectrometry can discover post-translational modifications, as well as sequence polymorphisms. Recent efforts have studied modifications at the proteomic scale. In this context, it becomes crucial to assess the(More)