Learn More
The time- and orientational-dependence of phosphocreatine (PCr) diffusion was measured using pulsed-field gradient nuclear magnetic resonance (PFG-NMR) as a means of non-invasively probing the intracellular diffusive barriers of skeletal muscle. Red and white skeletal muscle from fish was used because fish muscle cells are very large, which facilitates the(More)
We examined the influence of intracellular diffusion of O(2) and high-energy phosphate (HEP) molecules on the scaling with body mass of the post-exercise whole-animal rate of O(2) consumption (V(O(2))) and muscle arginine phosphate (AP) resynthesis rate, as well as muscle citrate synthase (CS) activity, in three groups of tail-flipping crustaceans. Two size(More)
The scaling of mitochondrial distribution, citrate synthase activity, and post-contractile glycogen recovery was examined in muscle fibers of the blue crab, Callinectes sapidus. The fast-twitch muscle fibers of C. sapidus can reach extremely large dimensions, which may impose constraints on aerobic metabolic processes. However, muscle cells from small crabs(More)
Muscle fibers that power swimming in the blue crab Callinectes sapidus are <80 microm in diameter in juveniles but grow hypertrophically, exceeding 600 microm in adults. Therefore, intracellular diffusion distances become progressively greater as the animals grow and, in adults, vastly exceed those in most cells. This developmental trajectory makes C.(More)
Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute(More)
When a marine mammal dives, breathing and locomotion are mechanically uncoupled, and its locomotor muscle must power swimming when oxygen is limited. The morphology of that muscle provides insight into both its oxygen storage capacity and its rate of oxygen consumption. This study investigated the m. longissimus dorsi, an epaxial swimming muscle, in the(More)
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic(More)
In some fish, hypertrophic growth of white muscle leads to very large fibers. The associated low-fiber surface area-to-volume ratio (SA/V) and potentially long intracellular diffusion distances may influence the rate of aerobic processes. We examined the effect of intracellular metabolite diffusion on mass-specific scaling of aerobic capacity and an aerobic(More)
We investigated the influence of intracellular diffusion on muscle fiber design in several swimming and non-swimming brachyuran crabs. Species with sustained swimming behavior had aerobic dark fibers subdivided into small metabolic functional units, creating short diffusion distances necessary to support the high rates of aerobic ATP turnover associated(More)
Caffeine has been shown to promote calcium-dependent activation of AMP-activated protein kinase (AMPK) and AMPK-dependent glucose and fatty acid uptake in mammalian skeletal muscle. Though caffeine has been shown to promote autophagy in various mammalian cell lines it is unclear if caffeine-induced autophagy is related to the calcium-dependent activation of(More)