Stephen Stephens

Learn More
We have examined the function of a member of the vasodilator-stimulated phosphoprotein family of proteins (DdVASP) in Dictyostelium. Ddvasp null cells lack filopodia, whereas targeting DdVASP to the plasma membrane with a myristoyl tag results in a significant increase in filopodia. The proline-rich domain-Ena/VASP homology 2 structure is required for both(More)
Little is known about cell-substrate adhesion and how motile and adhesive forces work together in moving cells. The ability to rapidly screen a large number of insertional mutants prompted us to perform a genetic screen in Dictyostelium to isolate adhesion-deficient mutants. The resulting substrate adhesion-deficient (sad) mutants grew in plastic dishes(More)
Myosin VII (M7) plays a role in adhesion in both Dictyostelium and mammalian cells where it is a component of a complex of proteins that serve to link membrane receptors to the underlying actin cytoskeleton. The nature of this complex is not fully known, prompting a search for M7-binding proteins. Co-immunoprecipitation experiments reveal that Dictyostelium(More)
Myosin VII (M7) and talin are ancient and ubiquitous actin-binding proteins with conserved roles in adhesion. Talin serves to link membrane receptors to the underlying actin cytoskeleton and forms a complex with M7 in Dictyostelium. The levels of talinA are tightly linked to M7 levels in Dictyostelium. Cells lacking M7 exhibit an 80% decrease in(More)
The human visuomotor system uses predictive mechanisms to allow the eye or hand to efficiently follow a moving target. The long-term goal of the present study is to determine whether the somatosensory system has similar capabilities. Subjects used the right arm to move the index fingertip inside of virtual tubes shaped as large elliptical objects positioned(More)
  • 1