Learn More
The pressure of fundamental limits on classical computation and the promise of exponential speedups from quantum effects have recently brought quantum circuits to the attention of the EDA community [10, 17, 4, 16, 9]. We discuss efficient circuits to initialize quantum registers and implement generic quantum computations. Our techniques yield circuits that(More)
A unitary operator U = ∑ j,k u j,k |k j| is called diagonal when u j,k = 0 unless j = k. The definition extends to quantum computations , where j and k vary over the 2 n binary expressions for integers 0, 1 · · · , 2 n − 1, given n qubits. Such operators do not affect outcomes of the projective measurement { j| ; 0 ≤ j ≤ 2 n − 1} but rather create arbitrary(More)
BACKGROUND Tumescent liposuction is a new method of liposuction under local anesthesia that has been developed by dermatologic surgeons. OBJECTIVE To determine the safety of tumescent liposuction in a large group of patients treated by dermatologic surgeons. METHODS A survey questionnaire was sent to 1,778 Fellows of the American Society for(More)
Scalability of a quantum computation requires that the information be processed on multiple subsystems. However, it is unclear how the complexity of a quantum algorithm, quantified by the number of entangling gates, depends on the subsystem size. We examine the quantum circuit complexity for exactly universal computation on many d-level systems (qudits).(More)
Operators acting on a collection of two-level quantum-mechanical systems can be represented by quantum circuits. This work presents a new universal quantum circuit capable of implementing any unitary operator. The circuit has a top-down structure, and the parameters for individual unitaries can be computed using standard matrix analysis algorithms. The(More)
We show how to implement an arbitrary two-qubit unitary operation using any of several quantum gate libraries with small a priori upper bounds on gate counts. In analogy to library-less logic synthesis, we consider circuits and gates in terms of the underlying model of quantum computation, and do not assume any particular technology. As increasing the(More)
Recently, Vatan and Williams utilize a matrix decomposition of SU(2 n) introduced by Khaneja and Glaser to produce CNOT-efficient circuits for arbitrary three-qubit unitary evolutions. In this note, we place the Khaneja Glaser Decomposition (KGD) in context as a SU(2 n) = KAK decomposition by proving that its Cartan invo-lution is type AIII, given n ≥ 3.(More)