Stephen Roderick Hines

Learn More
It has long been known that a fixed ordering of optimization phases will not produce the best code for every application. One approach for addressing this phase ordering problem is to use an evolutionary algorithm to search for a specific sequence of phases for each module or function. While such searches have been shown to produce more efficient code, the(More)
Very small instruction caches have been shown to greatly reduce fetch energy. However, for many appli- cations the use of a small filter cache can lead to an unacceptable increase in execution time. In this paper, we propose the Tagless Hit Instruction Cache (TH-IC), a technique for completely eliminating the performance penalty associated with filter(More)
It has long been known that a fixed ordering of optimization phases will not produce the best code for every application. One approach for addressing this phase-ordering problem is to use an evolutionary algorithm to search for a specific sequence of phases for each module or function. While such searches have been shown to produce more efficient code, the(More)
Instruction packing is a combination compiler/ architectural approach that allows for decreased code size, reduced power consumption and improved performance. The packing is obtained by placing frequently occurring instructions into an Instruction Register File (IRF). Multiple IRF entries can then be accessed using special packed instructions. Previous IRF(More)
Instruction fetch behavior has been shown to be very regular and predictable, even for diverse application areas. In this work, we propose the Lookahead Instruction Fetch Engine (LIFE), which is designed to exploit the regularity present in instruction fetch. The nucleus of LIFE is the Tagless Hit Instruction Cache (TH-IC), a small cache that assists the(More)
New processors, both embedded and general purpose, often have conflicting design requirements involving space, power, and performance. Architectural features and compiler optimizations often target one or more design goals at the expense of the others. This paper presents a novel architectural and compiler approach to simultaneously reduce power(More)
Software designers face many challenges when developing applications for embedded systems. One major challenge is meeting the conflicting constraints of speed, code size, and power consumption. Embedded application developers often resort to hand-coded assembly language to meet these constraints since traditional optimizing compiler technology is usually of(More)
The architectural design of embedded systems is becoming increasingly idiosyncratic to meet varying constraints regarding energy consumption, code size, and execution time. Traditional compiler optimizations are often tuned for improving general architectural constraints, yet these heuristics may not be as beneficial to less conventional designs.(More)
The Instruction Register File (IRF) is an architectural extension for providing improved access to frequently occurring instructions. An optimizing compiler can exploit an IRF by packing an application's instructions, resulting in decreased code size, reduced energy consumption and improved execution time primarily due to a smaller footprint in the(More)
The nature of embedded systems development places a great deal of importance on meeting strict requirements in areas such as static code size, power consumption, and execution time. In order to meet these requirements, embedded developers frequently generate and tune assembly code for applications by hand, despite the disadvantages of coding at a low level.(More)