Stephen R. Larter

Learn More
The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two(More)
Methanogenic degradation of crude oil hydrocarbons is an important process in subsurface petroleum reservoirs and anoxic environments contaminated with petroleum. There are several possible routes whereby hydrocarbons may be converted to methane: (i) complete oxidation of alkanes to H2 and CO2, linked to methanogenesis from CO2 reduction; (ii) oxidation of(More)
Methanogenesis was investigated in formation waters from a North Sea oil rimmed gas accumulation containing biodegraded oil, which has not been subject to seawater injection. Activity and growth of hydrogenotrophic methanogens was measured but acetoclastic methanogenesis was not detected. Hydrogenotrophic methanogens showed activity between 40 and 80°C with(More)
Methanogenic degradation of polycyclic aromatic hydrocarbons (PAHs) has long been considered impossible, but evidence in contaminated near surface environments and biodegrading petroleum reservoirs suggests that this is not necessarily the case. To evaluate the thermodynamic constraints on methanogenic PAH degradation we have estimated the Gibbs free energy(More)
Our understanding of the processes underlying the formation of heavy oil has been transformed in the last decade. The process was once thought to be driven by oxygen delivered to deep petroleum reservoirs by meteoric water. This paradigm has been replaced by a view that the process is anaerobic and frequently associated with methanogenic hydrocarbon(More)
The ability to mitigate toxicity of oil sands process-affected water (OSPW) for return into the environment is an important issue for effective tailings management in Alberta, Canada. OSPW toxicity has been linked to classical naphthenic acids (NAs), but the toxic contribution of other acid-extractable organics (AEOs) remains unknown. Here, we examine the(More)
Nitrogen compounds are ubiquitous in fossil fuels and yet our understanding of their origins in the geosphere is limited. In this study, high hydrogen pressure pyrolysis was performed on sample material representing potential contributors to sedimentary organic matter (algae, bacteria and archaea) and sediments representing early diagenetic accumulations(More)
Biodegradation of crude oils in subsurface petroleum reservoirs is an important alteration process affecting most of the world's oil deposits. The process preferentially removes light components from conventional oil to form heavy oil and ultimately the bitumen of the tar sands. Detailed analysis of the hydrocarbon components in a suite of sequentially(More)
The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis.(More)
Determination of stable carbon (613C) isotope systematics for alkylphenols and light aromatic hydrocarbons (BTEX) in petroleum formation waters and co-produced oils Gordon D. Love, Andrew C. Aplin*, Stephen R. Larter, Gillian Taylor School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK