Learn More
Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and(More)
The extraction of the centerlines of tubular objects in two and three-dimensional images is a part of many clinical image analysis tasks. One common approach to tubular object centerline extraction is based on intensity ridge traversal. In this paper, we evaluate the effects of initialization, noise, and singularities on intensity ridge traversal and(More)
We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit(More)
The clinical recognition of abnormal vascular tortuosity, or excessive bending, twisting, and winding, is important to the diagnosis of many diseases. Automated detection and quantitation of abnormal vascular tortuosity from three-dimensional (3-D) medical image data would, therefore, be of value. However, previous research has centered primarily upon(More)
Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly(More)
RATIONALE AND OBJECTIVES Malignancy provokes regional changes to vessel shape. Characteristic vessel tortuosity abnormalities appear early during tumor development, affect initially healthy vessels, spread beyond the confines of tumor margins, and do not simply mirror tissue perfusion. The ability to detect and quantify tortuosity abnormalities on(More)
OBJECTIVE Burn wound depth is a significant determinant of patient treatment and morbidity. While superficial partial-thickness burns generally heal by re-epithelialization with minimal scarring, deeper wounds can form hypertrophic or contracted scars, often requiring surgical excision and grafting to prevent a suboptimal result. In addition, without timely(More)
A 3D Partitioned Active Shape Model (PASM) is proposed in this paper to address the problems of the 3D Active Shape Models (ASM). When training sets are small. It is usually the case in 3D segmentation, 3D ASMs tend to be restrictive. This is because the allowable region spanned by relatively few eigenvectors cannot capture the full range of shape(More)