Stephen M. Sykes

Learn More
Polycomb genes encode critical regulators of both normal stem cells and cancer stem cells. A gene signature that includes Polycomb genes and additional genes coregulated with Polycomb genes was recently identified. The expression of this signature has been reported to identify tumors with the cancer stem cell phenotypes of aggressive growth, metastasis, and(More)
The ability of p53 to induce apoptosis plays an important role in tumor suppression. Here, we describe a previously unknown posttranslational modification of the DNA-binding domain of p53. This modification, acetylation of lysine 120 (K120), occurs rapidly after DNA damage and is catalyzed by the MYST family acetyltransferases hMOF and TIP60. Mutation of(More)
AKT activation is associated with many malignancies, where AKT acts, in part, by inhibiting FOXO tumor suppressors. We show a converse role for AKT/FOXOs in acute myeloid leukemia (AML). Rather than decreased FOXO activity, we observed that FOXOs are active in ∼40% of AML patient samples regardless of genetic subtype. We also observe this activity in human(More)
Hematopoietic stem cells (HSCs) engage in complex bidirectional signals with the hematopoietic microenvironment (HM), and there is emerging evidence that leukemia stem cells (LSCs) may use similar interactions. Using a syngeneic retroviral model of MLL-AF9 induced acute myeloid leukemia (AML), we have identified 2 different stages of leukemia progression,(More)
The mechanistic target of rapamycin (mTOR) pathway serves as a key sensor of cellular-energetic state and functions to maintain tissue homeostasis. Hyperactivation of the mTOR pathway impairs hematopoietic stem cell (HSC) function and is associated with leukemogenesis. However, the roles of the unique mTOR complexes (mTORCs) in hematopoiesis and(More)
Success with transplantation of autologous hematopoietic stem and progenitor cells (HSPCs) in patients depends on adequate collection of these cells after mobilization from the bone marrow niche by the cytokine granulocyte colony-stimulating factor (G-CSF). However, some patients fail to achieve sufficient HSPC mobilization. Retrospective analysis of bone(More)
The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade, we have discovered that p53 is(More)
Multiple endocrine neoplasia type I (MEN1) is an inherited tumor syndrome characterized by tumors in multiple endocrine organs including the parathyroids, pancreatic islets, and the pituitary. The gene mutated in MEN1 patients, Men1, encodes a protein of 610 amino acid residues, menin, and mutations in the Men1 gene lead to the MEN1 syndrome. Although the(More)
Apc, a negative regulator of the canonical Wnt signaling pathway, is a bona-fide tumor suppressor whose loss of function results in intestinal polyposis. APC is located in a commonly deleted region on human chromosome 5q, associated with myelodysplastic syndrome (MDS), suggesting that haploinsufficiency of APC contributes to the MDS phenotype. Analysis of(More)
Fanconi anemia (FA) is a human genetic disease characterized by a DNA repair defect and progressive bone marrow failure. Central events in the FA pathway are the monoubiquitination of the Fancd2 protein and the removal of ubiquitin by the deubiquitinating enzyme, Usp1. Here, we have investigated the role of Fancd2 and Usp1 in the maintenance and function of(More)