Learn More
By studying animal movements, researchers can gain insight into many of the ecological characteristics and processes important for understanding population-level dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the expected movement path of an animal, using discrete location data obtained at relatively short time intervals. The(More)
We study the genealogical structure of a population with stochastically fluctuating size. If such fluctuations, after suitable rescaling, can be approximated by a nice continuous-time process, we prove weak convergence in the Skorokhod topology of the scaled ancestral process to a stochastic time change of Kingman’s coalescent, the time change being given(More)
Imagine a pathogen that is spreading radially as a circular wave through a population of susceptible hosts. In the interior of this circular region, the infection dies out due to a subcritical density of susceptibles. If a mutant pathogen, having some advantage over wild-type pathogens, arises in this region it is likely to die out without leaving a(More)
In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are(More)
The clinical failure of antimicrobial drugs that were previously effective in controlling infectious disease is a tragedy of increasing magnitude that gravely affects human health. This resistance by pathogens is often the endpoint of an evolutionary process that began billions of years ago in non-disease-causing microorganisms. This environmental(More)
Theoretical studies of biological populations via analysis and/or simulation of deter-ministic and stochastic systems sometimes end up drawing conflicting conclusions. Papers purporting to investigate the same dynamics, albeit through different methods, often cannot agree on essential properties of the system being modeled. This problem often arises when(More)
One of the goals of this paper is to show that the infinite-alleles model with overdominant selection " looks like " the neutral infinite-alleles model when the selection intensity and mutation rate get large together. This rather surprising behavior was noticed by Gillespie (1999) in simulations. To make rigorous and refine Gillespie's observations, we(More)