Stephen M. Hayden

Learn More
The magnetic excitations of the square-lattice spin-1/2 antiferromagnet and high- T(c) parent compound La2CuO4 are determined using high-resolution inelastic neutron scattering. Sharp spin waves with absolute intensities in agreement with theory including quantum corrections are found throughout the Brillouin zone. The observed dispersion relation shows(More)
Inelastic neutron scattering is used to investigate the collective magnetic excitations of the high-temperature superconductor-parent antiferromagnet La2CuO4. We find that while the lower energy excitations are well described by spin-wave theory, including one- and two-magnon scattering processes, the high-energy spin waves are strongly damped near the(More)
We report a detailed inelastic neutron scattering study of the collective magnetic excitations of overdoped superconducting La(1.78)Sr(0.22)CuO(4) for the energy range 0-160 meV. Our measurements show that overdoping suppresses the strong response present for optimally doped La(2-x)Sr(x)CuO(4) which is peaked near 50 meV. The remaining response is peaked at(More)
The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field(More)
The presence or absence of a quantum critical point and its location in the phase diagram of high-temperature superconductors have been subjects of intense scrutiny. Clear evidence for quantum criticality, particularly in the transport properties, has proved elusive because the important low-temperature region is masked by the onset of superconductivity. We(More)
In conventional superconductors, lattice vibrations (phonons) mediate the attraction between electrons that is responsible for superconductivity. The high transition temperatures (high-T(c)) of the copper oxide superconductors has led to collective spin excitations being proposed as the mediating excitations in these materials. The mediating excitations(More)
The classical theory of solids, based on the quantum mechanics of single electrons moving in periodic potentials, provides an excellent description of substances ranging from semiconducting silicon to superconducting aluminium. Over the last fifteen years, it has become increasingly clear that there are substances for which the conventional approach fails.(More)
X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is q(CDW)=(0,0.328(2),0.5), with the in-plane component parallel to the b axis (chain direction). It has a(More)
We use inelastic neutron scattering to measure the magnetic excitations in underdoped La2-xSrxCuO4 (x=0.085, T_{c}=22 K) for large energy (5<E<200 meV) and temperature (5<T<300 K) ranges. At low T, the response is highly structured in E and q, with peaks in the local susceptibility at 15 and 50 meV and a four-peaked structure in q for E approximately 185(More)
Inelastic neutron scattering reveals strong spin fluctuations with energies as high as 0.4 eV in the nearly antiferromagnetic metal Cr0. 95V0.05. The magnetic response is well described by a modified Millis-Monien-Pines function. From the low-energy response, we deduce a large exchange enhancement, more than an order of magnitude larger than the(More)