Stephen M. Cain

Learn More
We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a(More)
We present a novel method for quantifying femoral orientation angles using a thigh-mounted inertial measurement unit (IMU). The IMU-derived femoral orientation angles reproduce gold-standard motion capture angles to within mean (standard deviation) differences of 0.1 (1.1) degrees on cadaveric specimens during clinical procedures used for the diagnosis of(More)
An array of inertial measurement units (IMUS) was experimentally employed to analyze warfighter performance on a target acquisition task pre/post fatigue. Eleven participants (5M/6F) repeated an exercise circuit carrying 20 kg of equipment until fatigued. IMUs secured to the sacrum, sternum, and a rifle quantified peak angular velocity magnitude (PAVM) and(More)
Three-dimensional rotations across the human knee serve as important markers of knee health and performance in multiple contexts including human mobility, worker safety and health, athletic performance, and warfighter performance. While knee rotations can be estimated using optical motion capture, that method is largely limited to the laboratory and small(More)
We utilize an array of wireless inertial measurement units (IMUs) to measure the movements of subjects (n=30) traversing an outdoor balance beam (zigzag and sloping) as quickly as possible both with and without load (20.5kg). Our objectives are: (1) to use IMU array data to calculate metrics that quantify performance (speed and stability) and (2) to(More)
Humans have ridden bicycles for over 200 years, yet there are no continuous measures of how skill differs between novice and expert. To address this knowledge gap, we measured the dynamics of human bicycle riding in 14 subjects, half of whom were skilled and half were novice. Each subject rode an instrumented bicycle on training rollers at speeds ranging(More)
  • 1