Learn More
Gene expression profiling may provide leads for investigations of the molecular basis of functional declines associated with aging. In this study, high-density oligonucleotide arrays were used to probe the patterns of gene expression in skeletal muscle of seven young women (20-29 years old) and eight healthy older women (65-71 years old). The older subjects(More)
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within a tandem array of D4Z4 repeats on chromosome 4q35. In addition to muscle degeneration, most patients with FSHD develop abnormalities of the retinal vasculature. Previous work has suggested that muscle degeneration in FSHD results from increased expression of genes(More)
There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by(More)
BACKGROUND Affymetrix microarrays are used by many laboratories to generate gene expression profiles. Generally, only large differences (> 1.7-fold) between conditions have been reported. Computational methods to reduce inter-array variability might be of value when attempting to detect smaller differences. We examined whether inter-array variability could(More)
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the(More)
Ragged red fibers are an important marker for mitochondrial disease. To evaluate the hypothesis that mitochondrial dysfunction may play a role in the pathogenesis of aging and inclusion body myositis, we studied the frequency of ragged red fibers in muscle biopsy specimens from 15 young and 13 old normal adults, and from 27 patients with inclusion body(More)
The present study was done to determine the effect of age on muscle concentrations of mRNAs encoding two growth factors that are thought to be important regulators of muscle mass: insulin-like growth factor-1 (IGF-1) and myostatin. Quantitative RT-PCR assays indicated that the mean IGF-1 mRNA concentration in older muscle (62-77 yr, n=15 men) was(More)
To identify sources of inter-subject variation in vaccine responses, we performed high-frequency sampling of human peripheral blood cells post-vaccination, followed by a novel systems biology analysis. Functional principal component analysis was used to examine time varying B cell vaccine responses. In subjects vaccinated within the previous three years,(More)
During the human B cell (Bc) recall response, rapid cell division results in multiple Bc subpopulations. The TLR-9 agonist CpG oligodeoxynucleotide, combined with cytokines, causes Bc activation and division in vitro and increased CD27 surface expression in a sub-population of Bc. We hypothesized that the proliferating CD27(lo) subpopulation, which has a(More)
The marked hypermuscularity in mice with constitutive myostatin deficiency reduces fat accumulation and hyperglycemia induced by high-fat feeding, but it is unclear whether the smaller increase in muscle mass caused by postdevelopmental loss of myostatin activity has beneficial metabolic effects during high-fat feeding. We therefore examined how(More)