Stephen L. Slocum

Learn More
Activation of the KEAP1-NRF2 signaling pathway is an adaptive response to environmental and endogenous stresses and serves to render animals resistant to chemical carcinogenesis and other forms of toxicity, whereas disruption of the pathway exacerbates these outcomes. This pathway, which can be activated by sulfhydryl-reactive, small-molecule pharmacologic(More)
The Keap1-Nrf2-ARE signaling pathway elicits an adaptive response for cell survival after endogenous and exogenous stresses, such as inflammation and carcinogens, respectively. Keap1 inhibits the transcriptional activation activity of Nrf2 (p45 nuclear factor erythroid-derived 2-related factor 2) in unstressed cells by facilitating its degradation. Through(More)
RecG is a member of the superfamily 2 helicase family. Its possible role in vivo is ATP hydrolysis driven regression of stalled replication forks. To gain mechanistic insight into how this is achieved, a coupled spectrophotometric assay was utilized to characterize the ATPase activity of RecG in vitro. The results demonstrate an overwhelming preference for(More)
Induction of enzymes that enhance the detoxication of chemical carcinogens has been a broadly effective strategy for chemoprevention of experimental carcinogenesis in rodent models. Several inducing agents are now in clinical trials to evaluate utility for prevention of cancers associated with unavoidable high exposures to environmental carcinogens. The(More)
Aflatoxin B1 (AFB1) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB1-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a(More)
The Keap1/Nrf2 pathway, known to regulate the expression of a series of cytoprotective and antioxidant genes, has been studied in the context of obesity and type 2 diabetes; diseases that are characterized by chronic oxidative stress. There is increasing evidence, however, that the transcription factor Nrf2 can crosstalk with pathways not directly related(More)
Mice are resistant to aflatoxin hepatotoxicity, primarily due to high expression of glutathione S-transferases (GSTs), and in particular the GSTA3 subunit. Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling, which controls a broad-based cytoprotective response, was activated either genetically or pharmacologically in an attempt to rescue GSTA3(More)
Pregnancy is a complex physiological state, in which the metabolism of endogenous as well as exogenous agents is ostensibly altered. One exogenous agent of concern is the hepatocarcinogen aflatoxin B1 (AFB1), a foodborne fungal toxin, that requires phase I metabolic oxidation for conversion to its toxic and carcinogenic form, the AFB1-8,9-exo-epoxide. The(More)
The Notch signaling pathway enables regulation and control of development, differentiation, and homeostasis through cell-cell communication. Our investigation shows that Notch signaling directly activates the Nrf2 stress adaptive response pathway through recruitment of the Notch intracellular domain (NICD) transcriptosome to a conserved Rbpjκ site in the(More)
  • 1