Stephen Jose Hanson

Learn More
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during(More)
Haxby et al. [Science 293 (2001) 2425] recently argued that category-related responses in the ventral temporal (VT) lobe during visual object identification were overlapping and distributed in topography. This observation contrasts with prevailing views that object codes are focal and localized to specific areas such as the fusiform and parahippocampal(More)
Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and(More)
Over the past decade, object recognition work has confounded voxel response detection with potential voxel class identification. Consequently, the claim that there are areas of the brain that are necessary and sufficient for object identification cannot be resolved with existing associative methods (e.g., the general linear model) that are dominant in brain(More)
Smith et al. report a large study of the accuracy of 38 search procedures for recovering effective connections in simulations of DCM models under 28 different conditions. Their results are disappointing: no method reliably finds and directs connections without large false negatives, large false positives, or both. Using multiple subject inputs, we apply a(More)
Brain-imaging research has largely focused on localizing patterns of activity related to specific mental processes, but recent work has shown that mental states can be identified from neuroimaging data using statistical classifiers. We investigated whether this approach could be extended to predict the mental state of an individual using a statistical(More)
A common misperception within the neural network community is that even with nonlinearities in their hidden layer, autoassociators trained with backpropagation are equivalent to linear methods such as principal component analysis (PCA). Our purpose is to demonstrate that nonlinear autoassociators actually behave differently from linear methods and that they(More)
Rumelhart (1987). has proposed a method for choosing minimal or "simple" representations during learning in Back-propagation networks. This approach can be used to (a) dynamically select the number of hidden units. (b) construct a representation that is appropriate for the problem and (c) thus improve the generalization ability of Back-propagation networks.(More)
Failing to engage in joint attention is a strong marker of impaired social cognition associated with autism spectrum disorder (ASD). The goal of this study was to localize the source of impaired joint attention in individuals with ASD by examining both behavioral and fMRI data collected during various tasks involving eye gaze, directional cuing, and face(More)
To understand how people interact with powerful computer systems, we analyzed, using several multivariate statistical analyses, the commands people use and the errors they made when performing office work with the UNIX operating system. The frequency of use across commands was very uneven. Users' most frequent commands were those tha t performed(More)