Stephen John Ralph

Learn More
The role of oncoproteins and tumor suppressor proteins in promoting the malignant transformation of mammalian cells by affecting properties such as proliferative signalling, cell cycle regulation and altered adhesion is well established. Chemicals, viruses and radiation are also generally accepted as agents that commonly induce mutations in the genes(More)
To develop new and more efficient anti-cancer strategies it will be important to characterize the products of transcription factor activity essential for tumorigenesis. One such factor is hypoxia-inducible factor-1alpha (HIF-1alpha), a transcription factor induced by low oxygen conditions and found in high levels in malignant solid tumors, but not in normal(More)
Succinate-driven oxidation via complex II (CII) may have a significant contribution towards the high rates of production of reactive oxygen species (ROS) by mitochondria. Here, we show that the CII Q site inhibitor thenoyltrifluoroacetone (TTFA) blocks succinate + rotenone-driven ROS production, whereas the complex III (CIII) Qo inhibitor stigmatellin has(More)
Recently mitochondria in cancer cells have emerged as the Achilles heel for tumour destruction. Anti-cancer agents specifically targeting cancer cell mitochondria are referred to as 'mitocans'. These compounds act by destabilising these organelles, unleashing their apoptogenic potential, resulting in the efficient death of malignant cells and suppression of(More)
Hypoxic microenvironments frequently exist in many solid tumours with oxygen levels fluctuating temporally and spatially from normoxia to hypoxia. The response to hypoxia in human cells is mainly regulated by hypoxia-inducible factors (HIFs), a family of transcription factors which orchestrate signalling events leading to angiogenesis and tumorigenesis.(More)
Mitochondria are emerging as idealized targets for anti-cancer drugs. One reason for this is that although these organelles are inherent to all cells, drugs are being developed that selectively target the mitochondria of malignant cells without adversely affecting those of normal cells. Such anti-cancer drugs destabilize cancer cell mitochondria and these(More)
Recent evidence suggests that a subset of cells within a tumour have 'stem-like' characteristics. These tumour-initiating cells, distinct from non-malignant stem cells, show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumour cells, resistance to chemotherapy or radiation, and they are often(More)
PURPOSE Vitamin E analogues are potent novel anticancer drugs. The purpose of this study was to elucidate the cellular target by which these agents, represented by alpha-tocopoheryl succinate (alpha-TOS), suppress tumors in vivo, with the focus on the mitochondrial complex II (CII). EXPERIMENTAL DESIGN Chinese hamster lung fibroblasts with functional,(More)
The transcription factor STAT1 plays a pivotal role in signal transduction of type I and II interferons (IFNs). STAT1 activation leads to changes in expression of key regulatory genes encoding caspases and cell cycle inhibitors. Deficient STAT1 expression in human cancer cells and virally mediated inhibition of STAT1 function have been associated with(More)
Mitochondria have emerged recently as effective targets for novel anti-cancer drugs referred to as 'mitocans'. We propose that the molecular mechanism of induction of apoptosis by mitocans, as exemplified by the drug alpha-tocopheryl succinate, involves generation of reactive oxygen species (ROS). ROS then mediate the formation of disufide bridges between(More)