Stephen James Wilson

Learn More
The orexins are recently identified appetite-stimulating hypothalamic peptides. We used immunohistochemistry to map orexin-A and orexin-B immunoreactivity in rat brain, spinal cord, and some peripheral tissues. Orexin-A- and orexin-B-immunoreactive cell bodies were confined to the lateral hypothalamic area and perifornical nuclei. Orexin-A-immunoreactive(More)
Two novel hypothalamic neuropeptides, orexin-A and -B, are suggested to regulate feeding. A single intracerebroventricular injection of orexin-A (23.4 nmol), administered 3 h into the light phase, increased feeding in satiated rats and prolonged feeding in fasted rats; it also increased feeding when given 6 h into, but not at the start of, the dark phase.(More)
Orexins are novel appetite-stimulating peptides expressed in the lateral hypothalamic area (LHA), and their expression is stimulated by hypoglycemia in fasted rats. We investigated activation of orexin and other neurons during insulin-induced hypoglycemia using the immediate early gene product Fos. Insulin (50 U/kg) lowered plasma glucose by >50% after 5 h(More)
Urotensin-II (U-II) is a vasoactive 'somatostatin-like' cyclic peptide which was originally isolated from fish spinal cords, and which has recently been cloned from man. Here we describe the identification of an orphan human G-protein-coupled receptor homologous to rat GPR14 and expressed predominantly in cardiovascular tissue, which functions as a U-II(More)
The effects of centrally injected orexin-A on plasma adrenocorticotropin (ACTH) and corticosterone levels and corticotropin releasing factor (CRF) and arginine vasopressin (AVP) mRNA in the parvocellular cells of the paraventricular nucleus (PVN) of the rat were investigated. In animals implanted previously with a lateral brain ventricle and femoral artery(More)
Leptin acts on the brain to inhibit feeding, increase thermogenesis, and decrease body weight. Neuropeptide Y (NPY)-ergic neurons of the hypothalamic arcuate nucleus (ARC) that project to the paraventricular nuclei (PVN) and dorsomedial nuclei (DMH) are postulated to control energy balance by stimulating feeding and inhibiting thermogenesis, especially(More)
The underlying causes of obesity are poorly understood but probably involve complex interactions between many neurotransmitter and neuropeptide systems involved in the regulation of food intake and energy balance. Three pieces of evidence indicate that the neuropeptide melanin-concentrating hormone (MCH) is an important component of this system. First, MCH(More)
Orexins (hypocretins), novel peptides expressed in specific neurons of the lateral hypothalamic area (LHA), stimulate feeding when injected intracerebroventricularly. We investigated their role in feeding in the rat by measuring hypothalamic prepro-orexin mRNA levels under contrasting conditions of increased hunger. Prepro-orexin mRNA levels increased(More)
Melanin-concentrating hormone (MCH) is implicated in the control of a number of hormonal axes including the hypothalamic-pituitary adrenal (HPA) axis. Previous studies have shown that there is evidence for both a stimulatory and an inhibitory action on the HPA axis; therefore, we attempted to further characterize the effects of MCH on this axis.(More)
Orexins are hypothalamic peptides implicated in the regulation of ingestive and other behaviours. Here we investigated prepro-orexin expression and hypothalamic orexin-A and -B levels in lactating rats, which display marked hyperphagia, with or without food restriction for 2 days or treatment with bromocriptine, which inhibits milk production and thus(More)