Stephen James Hearnshaw

Learn More
Multinuclear Cu(I) clusters are common in nature, but little is known about their formation or transfer between proteins. CopZ and CopA from Bacillus subtilis, which are involved in a copper-efflux pathway, both readily accommodate multinuclear Cu(I) clusters. Using the luminescence properties of a multinuclear Cu(I)-bound form of the two N-terminal soluble(More)
There is an urgent need to identify new treatments for tuberculosis (TB), a major infectious disease caused by Mycobacterium tuberculosis (Mtb), which results in 1.5 million deaths each year. We have targeted two essential enzymes in this organism that are promising for antibacterial therapy and reported to be inhibited by naphthoquinones. ThyX is an(More)
Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus that targets DNA gyrase. A previous structure of SD8 complexed with the N-terminal domain of the DNA gyrase A protein (GyrA) suggested that four SD8 molecules stabilized a tetramer of the protein; subsequent mass spectrometry experiments suggested that a protein dimer with two(More)
Copper trafficking proteins and copper-sensitive regulators are often found to be able to bind multiple Cu(I) ions in the form of Cu(I) clusters. We have determined the high-resolution X-ray crystal structure of an Atx1-like copper chaperone protein from Bacillus subtilis containing a novel tetranuclear Cu(I) cluster. The identities and oxidation states of(More)
Simocyclinone D8 (SD8) is a potent DNA gyrase inhibitor produced by Streptomyces antibioticus Tü6040. The simocyclinone (sim) biosynthetic gene cluster has been sequenced and a hypothetical biosynthetic pathway has been proposed. The tetraene linker in SD8 was suggested to be the product of a modular type I polyketide synthase working in trans with two(More)
TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence(More)
Four new crystal structures of the ATPase domain of the GyrB subunit of Escherichia coli DNA gyrase have been determined. One of these, solved in the presence of K(+), is the highest resolution structure reported so far for this domain and, in conjunction with the three other structures, reveals new insights into the function of this domain. Evidence is(More)
  • 1