Learn More
Facioscapulohumeral muscular dystrophy (FSHD) is a common form of muscular dystrophy in adults that is foremost characterized by progressive wasting of muscles in the upper body. FSHD is associated with contraction of D4Z4 macrosatellite repeats on chromosome 4q35, but this contraction is pathogenic only in certain "permissive" chromosomal backgrounds.(More)
To understand gene expression changes mediated by a polyglutamine repeat expansion in the human huntingtin protein, we used oligonucleotide DNA arrays to profile approximately 6000 striatal mRNAs in the R6/2 mouse, a transgenic Huntington's disease (HD) model. We found diminished levels of mRNAs encoding components of the neurotransmitter, calcium and(More)
Expression of a complementary DNA (cDNA) encoding the mouse MyoD1 protein in a variety of fibroblast and adipoblast cell lines converts them to myogenic cells. Polyclonal antisera to fusion proteins containing the MyoD1 sequence show that MyoD1 is a phosphoprotein present in the nuclei of proliferating myoblasts and differentiated myotubes but not expressed(More)
Disruption of cell polarity is seen in many cancers; however, it is generally considered a late event in tumor progression. Lethal giant larvae (Lgl) has been implicated in maintenance of cell polarity in Drosophila and cultured mammalian cells. We now show that loss of Lgl1 in mice results in formation of neuroepithelial rosette-like structures, similar to(More)
We have developed a statistical regression modeling approach to discover genes that are differentially expressed between two predefined sample groups in DNA microarray experiments. Our model is based on well-defined assumptions, uses rigorous and well-characterized statistical measures, and accounts for the heterogeneity and genomic complexity of the data.(More)
The neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) results from integral deletions of the subtelomeric repeat D4Z4 on chromosome 4q. A disruption of chromatin structure affecting gene expression is thought to underlie the pathophysiology. The global gene expression profiling of mature muscle tissue presented here provides the first(More)
Each unit of the D4Z4 macrosatellite repeat contains a retrotransposed gene encoding the DUX4 double-homeobox transcription factor. Facioscapulohumeral dystrophy (FSHD) is caused by deletion of a subset of the D4Z4 units in the subtelomeric region of chromosome 4. Although it has been reported that the deletion of D4Z4 units induces the pathological(More)
There is increasing recognition that stochastic processes regulate highly predictable patterns of gene expression in developing organisms, but the implications of stochastic gene expression for understanding haploinsufficiency remain largely unexplored. We have used simulations of stochastic gene expression to illustrate that gene copy number and expression(More)
TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T-cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells.(More)
The myoD gene converts many differentiated cell types into muscle. MyoD is a member of the basic-helix-loop-helix family of proteins; this 68-amino acid domain in MyoD is necessary and sufficient for myogenesis. MyoD binds cooperatively to muscle-specific enhancers and activates transcription. The helix-loop-helix motif is responsible for dimerization, and,(More)