Stephen J McDonnell

Learn More
The development of low-resistance source/drain contacts to transition-metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is(More)
Achieving low resistance contacts is vital for the realization of nanoelectronic devices based on transition metal dichalcogenides. We find that intrinsic defects in MoS2 dominate the metal/MoS2 contact resistance and provide a low Schottky barrier independent of metal contact work function. Furthermore, we show that MoS2 can exhibit both n-type and p-type(More)
Atomically smooth hexagonal boron nitride (h-BN) layers have very useful properties and thus potential applications for protective coatings, deep ultraviolet (DUV) emitters, and as a dielectric for nanoelectronics devices. In this paper, we report on the growth of h-BN by a low-pressure chemical vapor deposition (LPCVD) process using diborane and ammonia as(More)
Field-effect transistors fabricated on graphene grown by chemical vapor deposition (CVD) often exhibit large hysteresis accompanied by low mobility, high positive backgate voltage corresponding to the minimum conductivity point (V(min)), and high intrinsic carrier concentration (n(0)). In this report, we show that the mobility reported to date for CVD(More)
We report our investigation of the atomic layer deposition (ALD) of HfO2 on the MoS2 surface. In contrast to previous reports of conformal growth on MoS2 flakes, we find that ALD on MoS2 bulk material is not uniform. No covalent bonding between the HfO2 and MoS2 is detected. We highlight that individual precursors do not permanently adsorb on the clean MoS2(More)
Covalent functionalization of transition metal dichalcogenides (TMDCs) is investigated for air-stable chemical doping. Specifically, p-doping of WSe(2) via NOx chemisorption at 150 °C is explored, with the hole concentration tuned by reaction time. Synchrotron based soft X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) depict(More)
Tungsten diselenide (WSe2) is a two-dimensional material that is of interest for next-generation electronic and optoelectronic devices due to its direct bandgap of 1.65 eV in the monolayer form and excellent transport properties. However, technologies based on this 2D material cannot be realized without a scalable synthesis process. Here, we demonstrate the(More)
Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that(More)
In this work, we demonstrate the growth of HfSe2 thin films using molecular beam epitaxy. The relaxed growth criteria have allowed us to demonstrate layered, crystalline growth without misfit dislocations on other 2D substrates such as highly ordered pyrolytic graphite and MoS2. The HfSe2 thin films exhibit an atomically sharp interface with the substrates(More)
Using an ultrathin (∼ 15 nm in thickness) molybdenum oxide (MoOx, x < 3) layer as a transparent hole selective contact to n-type silicon, we demonstrate a room-temperature processed oxide/silicon solar cell with a power conversion efficiency of 14.3%. While MoOx is commonly considered to be a semiconductor with a band gap of 3.3 eV, from X-ray photoelectron(More)