Learn More
There is good evidence that the kynurenine pathway (KP) and one of its products, quinolinic acid (QUIN), play a role in the pathogenesis of neurological diseases, in particular AIDS dementia complex. Although QUIN has been shown to be produced in neurotoxic concentrations by macrophages and microglia, the role of astrocytes in QUIN production is(More)
BACKGROUND We previously reported similar AIDS-free survival at 3 years in children who were >1 year old initiating antiretroviral therapy (ART) and randomized to early versus deferred ART in the Pediatric Randomized to Early versus Deferred Initiation in Cambodia and Thailand (PREDICT) study. We now report neurodevelopmental outcomes. METHODS Two hundred(More)
Quinolinic acid (QUIN) has been associated with several inflammatory neurologic disorders, including AIDS dementia complex (ADC). Recent studies suggest that activation of macrophages with either HIV-1 or interferon-gamma (IFN-gamma) can lead to QUIN production. However, the importance of other cytokines, especially those related to the macrophage and that(More)
Human immunodeficiency virus (HIV) infection is often complicated by the development of acquired immunodeficiency syndrome (AIDS) dementia complex (ADC). Quinolinic acid (QUIN) is an end product of tryptophan, metabolized through the kynurenine pathway (KP) that can act as an endogenous brain excitotoxin when produced and released by activated(More)
The AIDS dementia complex (ADC) is a consequence of excessive immune activation driven at least in part by systemic HIV infection and probably brain infection. Quinolinic acid (QUIN) is a neurotoxic tryptophan metabolite produced by macrophages in response to stimulation with cytokines or infection with HIV-1. Consequently it has been implicated in ADC(More)
The role of astrocytes in the production of the neurotoxin quinolinic acid (QUIN) and other products of the kynurenine pathway (KP) is controversial. Using cytokine-stimulated human astrocytes, we assayed key enzymes and products of the KP. We found that astrocytes lack kynurenine-hydroxylase so that large amounts of kynurenine (KYN) and kynurenic acid(More)
OBJECTIVES To determine the effect of two doses of intramuscular cholecalciferol on serial serum 25-hydroxy-vitamin-D levels and on pharmacodynamics endpoints: calcium, phosphate, parathyroid hormone, C-reactive protein, interleukin-6, and cathelicidin in critically ill adults. DESIGN Prospective randomized interventional study. SETTING Tertiary,(More)
Activated macrophages produce quinolinic acid (QUIN), a neurotoxin, in several inflammatory brain diseases including AIDS dementia complex. We hypothesized that IL1-beta, IL6, transforming growth factor (TGF-beta2 and platelet activating factor could increase macrophage QUIN production. And that the HIV-1 proteins Nef, Tat and gp41 may also increase(More)