Stephen J. Del Grosso

Learn More
Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean(More)
The DAYCENT ecosystem model (a daily version of CENTURY) and an emission factor (EF) methodology used by the Intergovernmental Panel on Climate Change were used to estimate direct and indirect N2O emission for major cropping systems in the USA. The EF methodology is currently used for the USA greenhouse gas inventory but process based models, such as(More)
This article is citable (as shown above) and is released from embargo once it is posted to the Frontiers e-View site ( Please note: This article was downloaded from Frontiers e-View, a service that publishes fully edited and formatted manuscripts before they appear in print in Frontiers in Ecology and the Environment. Readers are(More)
We evaluated the biogeochemical cycling and relative greenhouse gas (GHG) mitigation potential of proposed biofuel feedstock crops by modeling growth dynamics of Miscanthus × giganteus Greef et Deuter (miscanthus), Panicum virgatum L. (switchgrass), Zea mays L. (corn), and a mixed prairie community under identical field conditions. DAYCENT model simulations(More)
[1] The shortgrass steppe is a semi-arid grassland, where elevated CO2 reduces stomatal conductance and promotes soil moisture storage. Enhanced biomass growth from elevated CO2 has been attributed in part to soil moisture effects. However, the influence of this soil moisture feedback on C cycling has received little attention. We used open-top chambers to(More)
Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to (1) review the literature to examine how(More)
It is difficult to quantify nitrogen (N) losses from agricultural systems; however, we can use 15N isotopic techniques to conduct site-specific studies to increase our knowledge about N management and fate. Our manuscript analyzes two reviews of selected 15N isotopic studies conducted to monitor N fate. The mechanistic foci of these studies include crop(More)
Jack A. Morgan is plant physiologist and Feike Dijkstra is post-doc research ecologist at the Rangeland Resources Research Unit, Ronald F. Follett is research leader and soil scientist and Stephen Del Grosso is a soil scientist and ecologist at the Soil Plant Nutrient Research Unit, USDA Agricultural Research Service Northern Plains Area, Fort Collins,(More)
Variability in soil organic carbon (SOC) results from natural and human processes interacting across time and space, and leads to large variation in the minimum difference in SOC that can be detected with a particular experimental design. Here we report a unique comparison of minimum detectable differences (MDDs) in SOC, and the estimated times required to(More)