Learn More
Recent studies have suggested that dietary inorganic nitrate (NO3 −) supplementation may improve muscle efficiency and endurance exercise tolerance but possible effects during team sport-specific intense intermittent exercise have not been examined. We hypothesized that NO3 − supplementation would enhance high-intensity intermittent exercise performance.(More)
Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological(More)
The properties of neuromuscular junctions (NMJs) were studied in motor-point biopsy samples from eight patients with congenital myasthenic syndromes affecting primarily proximal limb muscles ['limb-girdle myasthenia' (LGM)]. All had moderate to severe weakness of the proximal muscles, without short-term clinical fatigability but with marked variation in(More)
It has been suggested that a prior bout of high-intensity exercise has the potential to enhance performance during subsequent high-intensity exercise by accelerating the O(2) uptake (Vo(2)) on-response. However, the optimal combination of prior exercise intensity and subsequent recovery duration required to elicit this effect is presently unclear. Eight(More)
Dietary nitrate supplementation has been reported to improve short distance time trial (TT) performance by 1–3 % in club-level cyclists. It is not known if these ergogenic effects persist in longer endurance events or if dietary nitrate supplementation can enhance performance to the same extent in better trained individuals. Eight well-trained male cyclists(More)
We used near-infrared spectroscopy (NIRS) to test the hypothesis that body position alters the sigmoidal response profile of muscle fractional O(2) extraction (estimated using deoxy[Hb+Mb]) during incremental cycle exercise. Seven male subjects (mean±SD age 32±13 years) completed a ramp incremental cycling test to exhaustion (30W/min) in both the supine and(More)
Dietary nitrate supplementation, which enhances nitric oxide (NO) bioavailability, has previously been shown to contribute to improved exercise performance by reducing both oxygen cost and energy expenditure. In contrast, previous studies have indicated that NO can lower force production in vitro. To examine the role of dietary nitrates in regulating force(More)
_ VO 2max is not altered by self-pacing during incremental exercise: reply to the letter of Alexis R. Mauger Dr. Mauger argues that ''several methodological differences in study design'' can explain why we (Chidnok et al. 2012) were unable to reproduce his findings that a self-paced incremental test produced a higher _ VO 2 max than a conventional(More)
We tested the hypothesis that incremental cycling to exhaustion that is paced using clamps of the rating of perceived exertion (RPE) elicits higher $$ \dot{V}_{{{\text{O}}_{2} { \max }}} $$ values compared to a conventional ramp incremental protocol when test duration is matched. Seven males completed three incremental tests to exhaustion to measure $$(More)
We used extreme pedal rates to investigate the influence of muscle fibre recruitment on pulmonary V(O)(2) kinetics during unloaded-to-moderate-intensity (U-->M), unloaded-to-high-intensity (U-->H), and moderate-intensity to high-intensity (M-->H) cycling transitions. Seven healthy men completed transitions to 60% of the difference between gas-exchange(More)