Learn More
We have recently reported that minimally disturbed adult CNS white matter can support regeneration of adult axons by using a novel microtransplantation technique to inject minute volumes of dissociated adult rat dorsal root ganglion neurons directly into adult rat CNS pathways (Davies et al., 1997). This atraumatic injection procedure minimized scarring and(More)
Previous studies have correlated the failure of axon regeneration after spinal cord injury with axons contacting scar tissue rich in chondroitin sulfate proteoglycans (CSPGs; Davies et al., 1999). In the present study, we have conducted immunohistochemical and quantitative Western blot analysis of five axon-growth-inhibitory CSPGs and tenascin-C within stab(More)
BACKGROUND Two critical challenges in developing cell-transplantation therapies for injured or diseased tissues are to identify optimal cells and harmful side effects. This is of particular concern in the case of spinal cord injury, where recent studies have shown that transplanted neuroepithelial stem cells can generate pain syndromes. RESULTS We have(More)
It is widely accepted that the adult mammalian central nervous system (CNS) is unable to regenerate axons. In addition to physical or molecular barriers presented by glial scarring at the lesion site, it has been suggested that the normal myelinated CNS environment contains potent growth inhibitors or lacks growth-promoting molecules. Here we investigate(More)
The present study tests whether lesions small enough to allow the rapid reestablishment of a normally aligned tract glial framework would provide a permissive environment for the regeneration of cut adult CNS axons. We made penetrating microlesions which cut a narrow beam of axons in the adult rat cingulum, but caused minimal damage to the tract glial(More)
The formation of misaligned scar tissue by a variety of cell types expressing multiple axon growth inhibitory proteoglycans presents a physical and molecular barrier to axon regeneration after adult spinal cord injuries. Decorin is a small, leucine-rich proteoglycan that has previously been shown to reduce astrogliosis and basal lamina formation in acute(More)
BACKGROUND Transplantation of embryonic stem or neural progenitor cells is an attractive strategy for repair of the injured central nervous system. Transplantation of these cells alone to acute spinal cord injuries has not, however, resulted in robust axon regeneration beyond the sites of injury. This may be due to progenitors differentiating to cell types(More)
We have described a method for the microtransplantation of a suspension of a few thousand cells from mid to late embryonic mouse hippocampi into the fimbria of immunosuppressed adult rat hosts. There was close graft-to-host contact, across a non-scarred interface. The transplanted cells included CA3 type pyramids, and were enclosed within the host(More)
Freeze fracture has been used to examine junctional complexes within the gentamicin damaged guinea pig organ of Corti during the period of structural reorganisation associated with hair cell loss. When examined up to 28 days after a regime of chronic gentamicin administration, no significant alterations to the pattern or nature of the complex tight(More)
In a previous study we used the species-specific marker M6 to demonstrate that transplanted mouse embryonic hippocampal neurons grow axons at a rate of at least 1 mm/d for a distance of at least 10 mm along the longitudinal axis of the fimbria in immunosuppressed adult rat hosts. We now show that hippocampal neurons are able to grow comparably long(More)